首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamic recrystallization (DRX) behavior of LZ50 steel was investigated using hot compression tests at a deformation temperature of 870-1170 °C and a strain rate of 0.05-3 s?1. The effects of deformation temperature, strain, strain rate, and initial austenite grain size on the microstructural evolution during DRX were studied in detail. The austenite grain size of DRX was refined with increasing strain rate and decreasing temperature, whereas the initial grain size had no influence on DRX grain size. A model based on the Avrami equation was proposed to estimate the kinetics of the DRX under different deformation conditions. A DRX map, which was derived from the DRX kinetics, the recrystallized microstructure, and the flow stress analysis, can be used to identify optimal deformation conditions. The initiation of DRX was lower than Z c (critical Zener-Hollomon parameter) and higher than εc (critical strain). The relationship between the DRX microstructure and the Z parameter was analyzed. Fine DRX grain sizes can be achieved with a moderate Z value, which can be used to identify suitable deformation parameters.  相似文献   

2.
Strain-rate sensitivity (SRS) is an important parameter to describe the thermodynamic behavior in plastic deformation process. In this research, the variation of SRS associated with steady-state DRX in P/M superalloys was quantitatively investigated. Based on the theoretical analysis and microstructural observation of the alloy after deformation, the SRS coefficient was employed to identify the deformation mechanism of the alloy. Meanwhile, the corresponding relationship between SRS coefficient m, stress exponent n and deformation mechanism was revealed. The stress exponent n in the Arrhenius constitutive model of P/M superalloys was calculated. In addition, it is found there is a relatively stable stress exponent range (n = 4-6), indicating that dislocation evolution played as the major hot deformation mechanism for P/M FGH4096 superalloy. Furthermore, the Bergstrom model and Senkov model were used and combined together to estimate the SRS coefficient in the steady-state DRX and the m value maintains at 0.2-0.22, which are consistent with the microstructural evolution during hot deformation process. The SRS coefficient distribution map and power dissipation efficiency distribution map were finally constructed associated with the microstructural evolution during hot deformation, which can be used to optimize the processing parameters of the superalloys.  相似文献   

3.
Although twinning-induced plasticity (TWIP) steels have high tensile strength with high strain hardening and large uniform elongation due to the formation of deformation twins during plastic deformation, sheet formabilities of TWIP steels are relatively poor. In this study, to overcome this problem, TWIP-cored three-layer architectured steel sheets are produced using cladding with low carbon steel sheaths. For an optimum design of layer architectured materials, strain hardening exponent n and strain rate sensitivity m of the layer sheets are theoretically and experimentally investigated. The forced-based rule-of-mixtures well reproduces the experimental values of the equivalent n and m. Contrary to the conventional rule-of-mixtures, the equivalent n and m of the TWIP-cored mild steel-sheath layered sheets are governed not only by volume fractions and n and m of parent materials but also by the strength of strong layer.  相似文献   

4.
The compression deformation of 30Cr2Ni4MoV steel at different temperatures and strain rates is carried out on Gleeble 1500 thermal mechanical simulation tester. Based on the experimental flow curves, the strain hardening rate curves (θ = / versus σ) are derived, from which the characteristic stresses and strains are identified. Meanwhile, the dependences of the characteristic stresses and strains on Zener-Hollomon parameter are determined and the results show that the value of the critical stress of dynamic recrystallization is close to the value of the steady stress. With the aid of the experimental flow curves, the Avrami equation is employed to describe the kinetics of dynamic recrystallization. The time exponent (n) is expressed as a power law function of Zener-Hollomon parameter and the Avrami constant (k) is determined as a function of half of the time for the complete dynamic recrystallization (t 50). Furthermore, a constitutive model is presented based on the rule of mixtures when the dynamic recrystallization occurs. Validation of the constitutive model is implemented and the simulated results agree well with the experimental results.  相似文献   

5.
The microstructural evolution and special flow behavior of Ti-5Al-2Sn-2Zr-4Mo-4Cr during isothermal compression at a strain rate of 0.0001 s?1 were investigated. The dislocation climbs in elongated α grains resulted in the formation of low-angle boundaries that transform into high-angle boundaries with greater deformation, and the elongated α grains subsequently separated into homogenous globular α grains with the penetration of the β phase. The simultaneous occurrence of discontinuous dynamic recrystallization and continuous dynamic recrystallization in the primary β grains resulted in a trimode grain distribution. The β grains surrounded by dislocations presented an equilateral-hexagonal morphology, which suggests that grain boundary sliding through dislocation climbs was the main deformation mechanism. The true stress–strain curves for 1073 and 1113 K abnormally intersect at a strain of ~0.35, related to the α → β phase transformation and distinct growth of the β grain size.  相似文献   

6.
7.
The aim of this work is to analyze the plastic flow instability in Zn-21Al-2Cu alloy deformed under 10?3 s?1 and 513 K, which are optimum conditions for inducing superplastic behavior in this alloy. An evaluation using the Hart and Wilkinson–Caceres criteria showed that the limited stability of plastic flow observed in this alloy is related to low values of the strain-rate sensitivity index (m) and the strain-hardening coefficient (γ), combined with the tendency of these parameters to decrease depending on true strain (ε). The reduction in m and γ values could be associated with the early onset of plastic instability and with microstructural changes observed as function of the strain. Grain growth induced by deformation seems to be important during the first stage of deformation of this alloy. However, when ε > 0.4 this growth is accompanied by other microstructural rearrangements. These results suggest that in this alloy, a grain boundary sliding mechanism acts to allow a steady superplastic flow only for ε < 0.4. For ε values between 0.4 and 0.7, observed occurrences of microstructural changes and severe neck formation lead to the supposition that there is a transition in the deformation mechanism. These changes are more evident when ε > 0.7 as another mechanism is thought to take over.  相似文献   

8.
The deformation behavior of a 1981 aluminum alloy has been studied using a complex for simulating thermomechanical processes in the temperature range of 200–400°C at a deformation rate in the range of 0.001–10 s–1. The models of the relationships between the flow stress, temperature, and deformation rate have been constructed using a power-law dependence, exponential dependence, and hyperbolic-sine function on the Zener–Hollomon parameter (Z). In the calculations according to the power-law and exponential equations, discrepancies between the calculated and experimental values of the Zener–Hollomon parameter have been revealed at low and high values. These discrepancies are caused by the fact that the experimentally obtained dependences of the flow stress on the Z parameter over the entire range of its change with a single magnitude of the effective activation energy of the plastic deformation consist of two linear parts that correspond to the hot and warm deformation and have different magnitudes of the effective activation energy of plastic deformation with a lower value of the activation energy for hot deformation.  相似文献   

9.
The behavior of aluminum alloy AA2139 subjected to T6 treatment, including solution treatment and artificial aging, has been studied using cyclic loading with a constant total strain amplitude. Upon low-cyclic fatigue in the range of total strain amplitudes εac of 0.4–1.0%, the cyclic behavior of the AA2139-T6 alloy is determined by the processes that occur under the conditions of predominance of the elastic deformation over plastic deformation. The AA2139 alloy exhibits stability to cyclic loading without significant softening. The stress-strained state of the alloy upon cyclic loading can be described by the Hollomon equation with the cyclic strength coefficient K' and the cyclic strain-hardening exponent n' equal to 641 MPa and 0.066, respectively. The dependence of the number of cycles to fracture on the loading amplitude and its components (amplitudes of the plastic and elastic deformation) is described by a Basquin–Manson–Coffin equation with the parameters σ′/E = 0.014, b =–0.123, ε′f= 178.65, and c =–1.677.  相似文献   

10.
The simple power relationship σ?=?Κε p n satisfactorily expresses the tensile flow behavior of many metals and alloys in their uniform plastic strain regime. However, many FCC materials with low stacking fault energy have opposed such power law relationship. Alloy 617, an age-hardenable Ni-based superalloy is also observed not to obey the simple power law relationship neither in its solution-treated nor in its aged conditions. Various flow relationships were used to obtain the best fit for the tensile data, and different relationships were identified for the different aged conditions. The work-hardening rate (θ) demonstrates three distinct regions for all aged conditions, and there is an obvious change in the trend of θ versus σ. In the initial portion, θ decreases rapidly followed by a gradual increase in the second stage and again a decrease in its third stage is perceived in the Alloy 617. These three-stage characteristics are attributed to a commonly known precipitate, γ′: Ni3(Ti, Al) which evolves during aging treatment and well recognized under transmission electron microscopy (TEM) observation. TEM results also reveal a slight degree of coarsening in γ′ over aging. The tensile flow and the work-hardening behavior are well correlated with other microstructural evolution during the aging treatments.  相似文献   

11.
We used the isothermal compression test (conducted in a Gleeble-3500 system) to study the hot deformation behaviors of SiCp/Al composites over a wide range of temperatures (623-773 K) and strain rates (0.001-10 s?1). A 3D hot-processing map was constructed based on the Malas stability criteria and experimental data. An artificial neural network model of four hot work quality characteristic parameters (strain rate sensitivity m, its derivative m′, temperature sensitivity s, and its derivative s′) were established. A new hot-processing map, known as a hot-processing critical strain map, has been proposed based on the smallest strain prior to instability. Two optimized processing regions at 623-660 K, 0.05-0.075 s?1 and 720-773 K, 0.04-0.18 s?1 were determined based on this map.  相似文献   

12.
It has been shown that, in a uniaxial paramagnet with non-Kramers ions with a spin of S = 1 and single-ion anisotropy of the easy-plane type (DS Z 2 ), there is a low-field (μ0 H ≤ D) and low-temperature (k B T < 0.68D) region in which the isothermal magnetization along the hard direction H||OZ increases the magnetic entropy by ΔS M (T, ΔH = H f - H i > 0) > 0 and the adiabatic magnetization along the same direction reduces the sample temperature by ΔT ad(T, ΔH > 0) < 0 (inverse magnetocaloric effect (MCE)). The main features of the inverse MCE in uniaxial paramagnets with large spins (S = 2, 3, …) of the non-Kramers ions have been discussed.  相似文献   

13.
AlSi10Mg cylinders produced by laser powder-bed fusion have somewhat different yield behavior for cylinders with XY orientation and Z orientation. Earlier yielding for Z-oriented samples is likely related to micro-residual stress, resulting from the difference in thermal expansion of the aluminum matrix and cellular silicon. Smaller tensile reduction in area of Z-oriented samples is related to tearing along the softer region at the boundaries of melt pools, where the silicon cell spacing is larger. Indentation measurements confirmed the lower hardness at the edges of melt pools.  相似文献   

14.
The mechanisms of plastic deformation of Cr20Ni80 nichrome with an initial grain size of 80 μm were studied in the temperature range 600–950°C and the strain-rate range 1.5 × 10?6?5 × 10?2s?1. Nichrome is shown to exhibit anomalously high values of stress exponent n and a high deformation activation energy Q. These unusual properties were found to be caused by “threshold” stresses below which deformation does not occur. An analysis of the deformation behavior with allowance for threshold stresses reveals the regions of hot, warm, and cold deformation in nichrome. At normalized strain rates \(\dot \varepsilon \) kT/D 1 Gb < 10?8, the true values of n and Q are ~4 and 285 ± 30 kJ/mol, respectively. In the normalized-strain range 10?8?10?4 n ~ 6 and the deformation activation energy decreases to 175 ± 30 kJ/mol. This change in the deformation-behavior characteristics is explained by the transition from high-temperature dislocation climb, which is controlled by lattice self-diffusion, to low-temperature dislocation climb, which is controlled by pipe diffusion, as the temperature decreases. At \(\dot \varepsilon \) kT/D 1 Gb = 10?4, a power law break-down takes place and an exponential law (which describes the deformation behavior in the range of cold deformation) becomes operative.  相似文献   

15.
The hot compressive flow behavior of the cast Mg–9.5Zn–2.0Y alloy as a function of strain was analyzed, and the degree of dependence of the parameters (A: material constant, n 2: stress exponent, Q c: activation energy for plastic flow and α: stress multiplier) of the constitutive equation (\(\dot \varepsilon = A{\left[ {\sinh \left( {\alpha \sigma } \right)} \right]^{{n_2}}}\exp \left( {\frac{{ - {Q_c}}}{{RT}}} \right)\)) upon the strain was examined in a systematic manner. This is to explore the possibility of representing the hot compressive deformation behavior of metallic alloys in a simple way by using a reduced number of strain-dependent constitutive parameters. The analysis results for several different cases can be interpreted as follows: (1) Q c can be treated as being strain-independent, which is physically sensible; (2) while only the microstructure changes as a function of strain at low flow stresses, as the flow stress increases, the power-law creep deformation and power-law breakdown mechanisms change; (3) the regime where only A is strain dependent expanded to higher strain rates and lower temperatures as the strain increased, suggesting that the number of the strain-dependent parameters decreases as the initial microstructure is refined by dynamic recrystallization, and the microstructure approaches a steady state.  相似文献   

16.
Compositions of Fe(100 ? x)Mn x (x = 10 and 12 at. %) and Fe(100 ? y)Ni y (y = 18 and 20 at. %) were produced by combined mechanical alloying of pure-metal powders and annealed in the austenitic field. After annealing and cooling to room temperature, the alloys had a single-phase austenitic structure. During deformation, the γ phase partially transforms into the α 2 phase (and/or ? phase in Fe-Mn alloys). The phase composition of the alloys after deformation depends on the amount of alloying elements and the predeformation annealing regime. The amount of martensite in the structure of a bulk alloy obtained by powder compacting grows proportionally to the degree of deformation of the sample.  相似文献   

17.
Three initial tensile specimens having different textures and, in consequence, different r-values were cut from a sheet of an interstitial-free steel. Using these specimens, the effect of r-value and texture on plastic deformation and the necking behavior were studied by tackling the strain state and texture during tensile tests. A reduced decrease in work hardening rate of tensile specimens with higher r-values led to a slower onset of diffuse necking which offers an increased uniform elongation. A slower reduction in thickness of specimens with a higher r-value provided a favorable resistance against onset of failure by localized necking.  相似文献   

18.
The hot deformation mechanisms of an as-extruded Ti-44Al-5V-1Cr alloy with a large amount of remnant lamellae were investigated by hot compression tests at temperatures of 900-1250 °C and strain rates of 0.001-1 s?1. The hot processing map of the as-extruded Ti-44Al-5V-1Cr alloy was developed on the basis of dynamic materials modeling and the Prasad criteria. There were four different domains in the hot processing map, according to the efficiency of power dissipation, η. The flow soft and hot deformation mechanisms for different domains were illustrated in the context of microstructural evolution during the process of deformation. As a result, the dynamic recrystallization and superplastic deformation occurred at 1125-1150 °C near 0.001 s?1, and this region is suitable for superplastic forming. The α phase dynamic recrystallization and dynamic recovery occurred at 1250 °C and 0.1 s?1. The existence of small amount of the γ and β phases effectively inhibited the growth of α grains.  相似文献   

19.
A generalized theory of the normal properties of metals in the case of electron–phonon (EP) systems with a nonconstant density of electron states has been used to study the normal state of the SH3 and SH2 phases of hydrogen sulfide at different pressures. The frequency dependence of the real Re Σ (ω) and imaginary ImΣ (ω) parts of the self-energy Σ (ω) part (SEP) of the Green’s function of the electron Σ (ω), real part Re Z (ω), and imaginary part Im Z (ω) of the complex renormalization of the mass of the electron; the real part Re χ (ω) and the imaginary part Imχ (ω) of the complex renormalization of the chemical potential; and the density of electron states N (ε) renormalized by strong electron–phonon interaction have been calculated. Calculations have been carried out for the stable orthorhombic structure (space group Im3?m) of the hydrogen sulfide SH3 for three values of the pressure P = 170, 180, and 225 GPa; and for an SH2 structure with a symmetry of I4/mmm (D4h1?7) for three values of pressure P = 150, 180, and 225 GP at temperature T = 200 K.  相似文献   

20.
Transition of corrosion pit to crack under fatigue condition was investigated in high-strength 7075-T6 aluminum alloy. The pit was formed at the edge of a hole in a specimen. Specimen was subjected to a constant stress during the pit formation. Two types of corrosion pit were considered: corner-pit and through-pit. Two sizes were tested for each pit type. Also, the baseline data of cycles to initiate a 250-µm-long crack were established when the corrosion pit was created without any applied stress on the specimen, i.e., S appl = 0. The cycles to initiate a 250-µm-long crack initially decreased with increasing S appl relative to the baseline value and then increased with increasing S appl such that this increase was significant with higher value of S appl. The transition between this increase and decrease occurred when the S appl was greater or less than a value which caused the onset of plastic deformation at the root of the pit, respectively. Microstructural analysis showed that this decrease in cycles to initiate the crack was due to microcracks at the pit front which developed at the lower level of S appl, and the increase was due to plastic deformation at the higher levels of S appl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号