首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
添加硫酸铜对 TC4 钛合金微弧氧化膜性能的影响   总被引:1,自引:1,他引:0  
目的研究CuSO_4浓度和微弧氧化工艺参数(电压、氧化时间)对TC4钛合金微弧氧化膜颜色及性能的影响。方法在磷酸钠电解液中,对TC4钛合金进行微弧氧化处理,并添加CuSO_4获得不同颜色的陶瓷膜,对氧化膜的宏观形貌、微观形貌、物相结构以及硬度进行分析。结果添加CuSO_4能使陶瓷膜颜色变深,随着CuSO_4浓度升高,膜层由灰色逐渐变为红褐色。当CuSO_4质量浓度为0.5 g/L时,氧化膜表面均匀致密,显微硬度最高(627.1HV);当CuSO_4质量浓度为1.5 g/L时,氧化膜显微硬度最低(382.8HV)。随着电压升高,膜层颜色加深,色泽更均匀,但表面硬度下降。在400 V条件下制备的氧化膜硬度最低,但是色泽最均匀。随着氧化时间的延长,氧化膜厚度增加,颜色加深,色泽更为均匀,但是当氧化时间超过15 min后,氧化膜颜色变浅。结论 CuSO_4对微弧氧化膜的显色作用明显,其浓度及微弧氧化工艺参数(电压、氧化时间)均对涂层性能、色泽、致密性、厚度及相组成具有很大的影响。  相似文献   

2.
6061铝合金微弧氧化着色工艺研究   总被引:2,自引:2,他引:0  
崔联合  张军  曹红卫 《表面技术》2011,40(1):93-95,99
采用微弧氧化工艺对6061铝合金手柄表面进行处理,研究了电解液的成分及浓度、微弧氧化电参数对氧化膜耐磨性和颜色的影响.结果表明:随着氧化时间和电流密度的增加,膜层与基体的结合强度增大,但电流密度过大会烧蚀膜层;在电解液中添加KMnO_4可以获得黑色陶瓷膜,添加Na_2 WO_4可制备黄色陶瓷膜;改变电解液成分及浓度、微...  相似文献   

3.
镁合金微弧氧化着色膜的制备工艺及其性能   总被引:2,自引:0,他引:2  
用微弧氧化方法在AZ91D镁合金基体上获得不同颜色氧化膜陶瓷层,研究了电解液浓度、电流密度、处理时间对氧化膜的影响.结果表明:试样在加入以KMnO4为着色盐的硅酸盐体系电解液中,发现溶液浓度对颜色的改变影响最大,而相同溶液浓度的试样随反应时间或者电流密度的改变,颜色的变化趋势比较平稳.通过比较,发现在低浓度着色盐溶液、低电流密度条件下处理的膜层表面质量最好.  相似文献   

4.
在含有不同氟离子浓度的硅酸钠电解液体系中,采用恒压微弧氧化技术对AZ31镁合金进行表面处理,通过XRD、SEM、EDS等研究镁合金表面微弧氧化膜层形貌和相结构特征,探讨氟离子对膜层形成的影响规律.研究结果表明:随着氟离子浓度的增加,膜层微孔数量逐渐减少,微孔孔径逐渐变大且分布均匀,但氟离子浓度过高时,膜层缺陷增多,出现微裂纹和局部孔径较大的微孔;微弧氧化膜层主要由MgAl2O4和MgSiO3组成,其含量随着氟离子浓度的变化而变化,当氟离子浓度范围为2~4 g/L时微弧氧化膜中MgAl2O4和MgSiO3的含量最高;动电位极化曲线表明微弧氧化膜的耐腐蚀性能也随之呈先增后减的趋势.  相似文献   

5.
目的 探索电解液中KOH浓度对LA103Z镁锂合金微弧氧化成膜过程及膜层耐蚀性能的影响规律.方法 通过恒压微弧氧化法,在KOH质量浓度分别为2、4、6 g/L的硅酸盐系电解液中制备微弧氧化膜层.采用扫描电子显微镜(SEM)观察微弧氧化膜层的表面形貌和截面形貌,采用Image-J软件分析膜层的孔隙率和厚度,通过电化学试验表征膜层的耐腐蚀性能.结果 随KOH浓度的升高,微弧氧化过程中通过试样的电流密度增大,膜层表面微孔数目减少、孔径增大,膜层厚度也增加,试样的耐蚀性先升高后降低.当KOH的质量浓度为4 g/L时,膜层表面微孔大小均一、分布均匀,孔径尺寸较小,为2~4μm,孔隙率最低,为3.56%,膜层内部结构较致密,耐蚀性最好,其自腐蚀电流密度为0.26μA/cm2,与基体相比降低了2个数量级.结论 KOH浓度的改变主要影响微弧氧化成膜过程火花放电阶段的形貌.适当升高KOH浓度可有效改善膜层表面的微孔分布,增加膜层厚度,提高膜层致密度,从而提高膜层耐蚀性.当KOH浓度过高时,膜层内部大孔洞和裂纹等缺陷增多,膜层耐蚀性降低.  相似文献   

6.
为了提高钛合金的表面生物活性,采用在含有钙磷的电解液中对钛合金进行了微弧氧化,得到了含有钙磷的氧化层.研究了微弧氧化溶液浓度和氧化时间对膜层孔洞的影响,讨论了氧化膜中孔洞的形成和氧化膜生长机制.结果表明,在一定的条件下,电解液浓度的升高使得微弧氧化过程中电流密度相对增大,从而使得膜层孔洞增大.随着微弧氧化处理时间的延长,膜层表面的孔洞逐渐变小,最终封闭;膜层内钙含量随微弧氧化处理时间的延长而逐渐增多;膜层内磷含量先是增加,后有下降趋势.  相似文献   

7.
在含有不同氟离子浓度的硅酸钠电解液体系中,采用恒压微弧氧化技术对AZ31镁合金进行表面处理,通过XRD、SEM、EDS等研究镁合金表面微弧氧化膜层形貌和相结构特征,探讨氟离子对膜层形成的影响规律。研究结果表明:随着氟离子浓度的增加,膜层微孔数量逐渐减少,微孔孔径逐渐变大且分布均匀,但氟离子浓度过高时,膜层缺陷增多,出现微裂纹和局部孔径较大的微孔;微弧氧化膜层主要由MgAl2O4和MgSiO3组成,其含量随着氟离子浓度的变化而变化,当氟离子浓度范围为2~4 g/L时微弧氧化膜中MgAl2O4和MgSiO3的含量最高;动电位极化曲线表明微弧氧化膜的耐腐蚀性能也随之呈先增后减的趋势。  相似文献   

8.
在电解液中添加HfO2对Ti-6Al-4V钛合金进行微弧氧化处理,通过表征微弧氧化膜表、截面形貌,膜层成分及电化学行为,并测量膜层厚度、硬度、粗糙度等参数来研究添加HfO2对钛合金微弧氧化膜层特性的影响。结果表明:添加HfO2后,微弧氧化膜层主要成分是Al2TiO5、TiO2和γ-Al2O3。较合适浓度的HfO2能促进成膜反应,改善微弧氧化膜的微观结构,提高膜层的厚度、硬度并降低表面粗糙度,且膜层试样具有双层膜结构,膜层试样的耐腐蚀性能好于原基体。HfO2浓度为3.0g/L时所获得的微弧氧化膜层综合性能最佳。  相似文献   

9.
用微弧氧化的方法,通过两种电解液体系在AZ91D镁合金基体上获得颜色均匀、致密性好的黑色陶瓷层,研究了在这两种体系中,着色盐成分、浓度,以及氧化电压和处理时间对氧化陶瓷层的影响。结果表明:试样在两种电解液体系中皆能得到黑色陶瓷层,不同的基础电解液所需加的着色盐不同,在硅酸盐体系中以CuSO4为主要着色盐,在磷酸盐体系中以CoSO4为主要着色盐。着色盐浓度和氧化电压对膜层颜色影响较大,在一定范围内,随着氧化电压的上升,膜层颜色有所加深,而相同条件下氧化时间的改变对颜色变化影响较为缓和。通过比较,发现在磷酸盐体系中膜层表面质量最好。  相似文献   

10.
用微弧氧化的方法,用碱性电解质体系在AZ91D镁合金基体上获得了颜色均匀、致密性好的绿色陶瓷层.研究了电解质浓度、氧化电压、膜厚和粗糙度对陶瓷膜层质量的影响.结果表明:试样在以Na<,2>SiO<,3>为主盐的电解质中分别加入两种不同着色盐皆能得到性能良好的绿色陶瓷膜,在点滴试验中陶瓷膜的耐腐蚀时间均超过40min.其中着色盐浓度对膜层颜色影响较大,氧化电压对膜层颜色影响则趋于平缓.通过比较发现,绿色膜在低着色盐浓度下膜层表面质量最好.  相似文献   

11.
目的探究微弧氧化电解液中纳米氮化硼(BN)浓度对铝微弧氧化陶瓷层组织和性能的影响。方法在硅酸盐体系电解液中加入1~5 g/L不同浓度的纳米BN,制备纳米BN复合微弧氧化层。利用扫描电镜、能谱仪和X射线衍射仪,分别表征纳米BN复合微弧氧化层的微观组织、元素分布及物相组成。采用涂层测厚仪、粗糙度仪、显微硬度计、摩擦磨损试验机等手段,研究纳米BN对1060纯铝微弧氧化膜层的厚度、粗糙度、显微硬度、摩擦学性能的影响。结果在微弧氧化BN复合膜的表层有弥散分布的BN颗粒,当电解液中添加3 g/L的纳米BN时,制备的微弧氧化层的性能最好,其表面的孔洞数量最少且孔径最小,膜层表面更加致密,其厚度可达到(93.8±1.9)μm,硬度达到(942±51)HV,粗糙度Ra降低为(3.66±0.14)μm,摩擦系数降低为0.55,磨损体积比未添加BN的膜层减少了1.18×10-2 mm3,并且磨痕平整光滑,裂纹较少。结论硅酸盐电解液中加入纳米BN能够改善1060纯铝微弧氧化膜层的综合性能。  相似文献   

12.
目的分析Ti N颗粒在镁合金微弧氧化过程中的作用,并研究其在膜层中对镁合金硬度、耐磨和耐蚀等性能的影响。方法通过在微弧氧化电解液中添加2.7μm Ti N颗粒,并使其充分分散于电解液中,使电解液中Ti N颗粒的质量浓度分别为0、2、4、6 g/L,并控制其他实验参数(如电流密度、频率、占空比和氧化时间)一样的情况下进行实验,通过电子显微镜、涂层厚度测厚仪、显微维氏硬度计、X射线衍射和电化学工作站,分别从膜层的表面形貌、厚度、硬度、相组成及耐蚀性等方面,研究了Ti N颗粒对镁合金微弧氧化膜层性能的影响。结果在微弧氧化电解液中添加Ti N颗粒后,相同电化学参数下制得的微弧氧化膜层变得致密,厚度、硬度有所增加,氧化膜层主要由Mg、MgO、Mg2Zr5O12、Ti N组成。极化曲线显示,加入Ti N颗粒,制备的微弧氧化膜层比未加入Ti N颗粒制得的膜层的腐蚀电流下降了2个数量级。阻抗图谱表明,电阻值增加了1个数量级。结论 Ti N颗粒能够随镁合金的微弧氧化过程进入制得的氧化膜层中,并且能够增加膜层厚度和硬度,使膜层的耐磨、耐蚀性得到提高。  相似文献   

13.
目的在不同电解液、电压等工艺参数下对TC4钛合金进行阳极氧化,获得彩色膜,分析探讨着色膜颜色随不同工艺参数变化的显色规律,并通过该显色规律分析着色膜显色机理。方法分别选用NaOH电解液、H3PO3电解液、Na2SiO3盐溶液对Ti6A14V钛合金进行氧化着色。通过金相显微镜、SEM、XRD、AFM和3nh色差仪等测试方法,分析氧化膜层显微组织、形貌特征、物相成分、膜层厚度与颜色变化。结果3nh色差仪测得膜层颜色值(L^*、a^*、b^*)随电压具有周期变化规律。在电压参数为120 V左右的起弧电压之前,三种电解液阳极氧化着色膜均是由非晶态的钛氧化物组成,显色规律一致,氧化膜层致密均匀,只是生长速率稍有不同。膜层显色是干涉加强光色与干涉减弱光色的互补光色的共同作用。通过钛合金氧化膜干涉光程差公式修正,推导出了薄膜厚度的理论计算公式,且AFM测试结果与理论计算得出的膜厚基本一致。随着电压继续升高,电解反应剧烈,宏观表面观察到微弧放电现象,电解过程过渡到微弧氧化阶段。结论在低电压阳极氧化阶段,TC4钛合金着色膜层是由致密均匀的非晶态钛氧化物组成,膜层生长方式是随电压均匀层状生长,显色原理主要是薄膜干涉原理。通过控制电压参数,可控制膜层厚度,继而得到理想的颜色。在Na2SiO3盐溶液中的膜层生长速率为1~1.7 nm/V。  相似文献   

14.
综合国内外钛合金微弧氧化生物膜制备的方法,主要阐述了电参数与电解液对钛合金微弧氧化生物膜结构以及性能的影响机制.脉冲电源下,电流对膜层的制备具有良好的调整作用,且得到的膜层厚度显著增大.膜层厚度随氧化电压的升高而增加时,膜层表面颜色与腐蚀电位也发生变化.增加脉宽,降低频率时,单脉冲放电能量随之增加,微弧氧化成膜速率显著加快.不同体系电解液制备的膜层表面粗糙度、微孔结构等存在差异.在电解液中引入银、锌、铜离子能有效改善植入物涂层表面细菌黏附引起的异物炎症问题,增强其抗菌作用.基于目前钛合金微弧氧化的研究进展,展望了该研究方向,对钛合金植入物在临床医学应用发展中具有积极的促进作用.  相似文献   

15.
利用多功能微弧氧化电源,采用目前工艺较为成熟和应用最广泛的电参数对TC4钛合金进行微弧氧化,并在电解液中添加不同浓度的纳米二氧化锆,对比微弧氧化膜层的微观形貌和综合力学性能,探究纳米二氧化锆对膜层的影响。实验结果表明,随着纳米二氧化锆浓度的增加,膜层厚度几乎不发生变化,但膜层的成分和含量发生改变:膜层中出现板钛矿相,且含量不断增加。当纳米二氧化锆浓度为2 g/L时,膜层的粗糙度相比未添加纳米二氧化锆时大幅下降,膜层耐磨性能最好,且此时膜层表面微孔直径最小且尺寸均匀,耐腐蚀性能最佳。  相似文献   

16.
从火花放电方面归纳整理了镁合金微弧氧化膜层的形成机理,并分析了膜层结构。在此基础上,结合国内外研究现状,阐述了预处理、电解质和添加剂以及电参数(电压、电流模式和脉冲频率)和封孔技术对镁合金微弧氧化膜层耐蚀性和生物相容性的影响。着重分析了电解质和添加剂的种类、浓度对膜层和生物性能的影响机制,其中电解质包括碱性硅酸盐和磷酸盐电解液等,添加剂包括甘油、氟化物、羟基磷灰石和纳米粒子等。研究发现,碱性磷酸盐电解质的加入可以降低膜层腐蚀速率,促进骨整合和细胞附着过程,羟基磷灰石、Ca、P等具有生物活性和对人体有益的粒子作为添加剂加入,可以显著提高膜层的耐蚀性和生物相容性。最后,基于研究现状,对镁合金微弧氧化技术在生物医用方面的发展进行了展望。  相似文献   

17.
吴琴 《热处理》2010,25(4):35-38
应用微弧氧化技术在纯钛表面制备了含羟基磷灰石的氧化物膜。在氧化过程中,将钛试件放入含磷酸二氢钠(NaH2PO4.H2O)和乙酸钙((CH3COO)2Ca.H2O)的电解液中,用双脉冲交流电源处理。用扫描电镜(SEM)观察试件的表面形貌,用普通光学显微镜(OM)观察试件的截面形貌,用X射线衍射(XRD)分析其显微结构。结果表明,微弧氧化处理后,纯钛表面生成了内层致密外层多孔的氧化膜。  相似文献   

18.
微弧氧化前,用打磨和喷砂两种方法对基材进行预处理,获得两种氧化膜试样,对比了这两种试样的形貌、化学组成及耐腐蚀性能,分析了预处理方法对微弧氧化电压值的影响。结果表明:打磨后微弧氧化的电压值高于喷砂后微弧氧化;微弧氧化膜的耐蚀性能较基体大幅度提高,打磨试样的耐蚀性能较喷砂试样提高了40%左右;喷砂试样的氧化膜表面整体保留了喷砂后粗糙不平的形貌,而打磨试样的氧化膜较喷砂试样平整,微孔尺寸均匀且较喷砂试样的尺寸小;氧化膜表面的化学成分主要有O,Mg,Si,Al等,预处理对氧化膜化学成分及含量的影响不显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号