首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
A new manganite type CMR material, La0.7Hg0.3MnO3 has been successfully synthesized and has been found to exhibit magnetoresistance (≈9%) at low fields (≈1.5 kG). The synthesis has been carried out through a solid state reaction route consisting of the formation of La0.7MnO3 followed by diffusion of Hg leading to La0.7Hg0.3MnO3. The as grown samples are polycrystalline and correspond to an orthorhombic unit cell with the lattice parameters; a=5.5183 Å, b=5.6383 Å and c=7.5368 Å. The typical grain size as revealed by scanning electron microscopy is in the range of 0.5–2 μm. The ρT behaviour shows a peak at TIM=227 K. The ρT behaviour above this temperature corresponds to that of an insulator and below this to that of a metal. The ρT behaviour remains unaltered when a magnetic field (Hdc=1.5 kG) is applied. However, with this magnetic field a drop in the resistivity is observed up to 77 K. At room temperature the magnetoresistance ratio (MRR) is too small but it steadily increases as the temperature is decreased. Thus, MRRs at 227.13 and 77 K are 3.41 and 9.05%, respectively, in an applied field of Hdc=1.5 kG. At a given temperature the variation in MRR with field Hdc is rapid at lower field values (Hdc<1.2 kG) and scales linearly for higher field values (Hdc>1.2 kG). It may be mentioned that the present work on the synthesis and magnetoresistance behaviour of La0.7Hg0.3MnO3, is the first of its type.  相似文献   

2.
The crystal and magnetic structures of the Laves phase compound NdCo2 in the temperature range from 9 to 300 K are determined by Rietveld refinement technique, using high-resolution neutron powder diffraction data. The compound crystallizes in space group above the magnetic ordering temperature TC (≈100 K), in space group I41/amd below TC and in space group Imma below the tetragonal–orthorhombic structural/magnetic transitions at TM ≈ 42 K. The assignment of the space groups to the crystal structures of NdCo2 in different temperature ranges complies with the reported Mössbauer studies. Detailed information of the crystal and magnetic structures of NdCo2 at different temperatures are reported.  相似文献   

3.
The HfFe6Ge6-type YbMn6Ge6−xGax solid solution (0.07≤x≤0.72) has been studied by X-ray diffraction, microprobe analysis and powder magnetization measurements. All the compounds order antiferromagnetically between TN=481 K for x=0.07 and TN=349 K for x=0.72 and display more or less pronounced spontaneous magnetization at lower temperature. The corresponding Curie points increase from 40 K for x=0.07 to 319 K for x=0.72. The maximum magnetization values of the Ga-rich compounds (M≈5 μB/f.u. at 6 K) is compatible with a ferrimagnetic order of the Mn and Yb sublattices whereas the smaller values measured in the Ga-poor compounds suggest the stabilization of non-colinear magnetic structures. All the studied compounds are characterized by rather large coercive fields at low temperature (4.0≤Hc≤8.2 kOe).  相似文献   

4.
Powder X-ray and neutron diffraction and magnetic measurements have been performed on R2RhSi3 (R=Ho and Er) compounds at low temperatures. The compounds crystallize in a derivative of the hexagonal AlB2-type structure. The crystal structure parameters have been refined on the basis of the X-ray and neutron diffraction patterns collected in the paramagnetic region. These compounds are antiferromagnets with Néel temperatures of 5.2 K for Ho2RhSi3 and 5 K for Er2RhSi3. Both compounds exhibit collinear magnetic structures, described by the propagation vector k=(1/2,0,0) for Ho2RhSi3 and k=(0,0,0) for Er2RhSi3. This magnetic order is stable in the temperature range between 1.5 K and the Néel temperature.  相似文献   

5.
The phase diagram of the Ti–In system was determined using DTA, XRD and EDX analyses. The existence of the phases Ti2In5 [Mn2Hg5 type structure, space group P4/mbm, a=0.99995(3), c=0.29960(2) nm] and Ti3In [Ni3Sn type structure, space group P63/mmc, a=0.5978(1), c=0.4812(1) nm] was confirmed. The phase previously labeled Ti3In2 was found to exist in a narrow homogeneity region near Ti56In44. Rietveld refinement of the XRD powder pattern yielded solutions compatible with a Cu3Au-type or a BiIn-type crystal structure, but not with a CuAu-type crystal structure. Furthermore, at 38.5 at.% In, a new phase was observed having a γ-brass related crystal structure [Ti8In5, space group , a=0.99578(6) nm]. The intermetallic phases were formed by a cascade of peritectic reactions ending in a eutectic at >99 at.% indium between Ti2In5 and (In) at 0.4 K below the melting temperature of pure indium.  相似文献   

6.
The crystal structure of a new series of ternary rare-earth platinum borides RPt3B (R=La, Pr, Nd) has been studied by X-ray powder diffraction analyses from the ‘as-cast’ alloys. The tetragonal CePt3B structure type, space group P4mm (No. 99), has been confirmed for all compounds. Rietveld refinements for the two compounds, PrPt3B and NdPt3B, were performed. LaPt3B is a temperature-independent Pauli-type paramagnet from room temperature down to 4 K. PrPt3B orders antiferromagnetically at TN=15 K followed by a ferromagnetic spin flip at TC=5 K, whereas NdPt3B exhibits an antiferromagnetic spin alignment at a Néel temperature TN=7 K. The temperature dependence of the electrical resistivity, ρ(T), reflects the metallic character of these compounds. Furthermore the characteristic changes of slope of ρ(T) plots prove the magnetic transitions.  相似文献   

7.
The system (1−x)FeIn2S4xFeIn2Se4 has been investigated by X-ray powder methods. The subsolidus phase diagram is constructed in the temperature interval 600–1000°C. The spinel type FeIn2S4 exhibits a phase width up to the composition FeIn2S3Se and the layered FeIn2Se4 is formed for 1≥x≥0.65. A new layered compound is formed for 0.55≥x≥0.4 which crystallizes at temperatures below 850°C in an -FeGa2S4 structure with a=363.6 pm and c=1207.1 pm (x=0.5) for the hexagonal cell and at higher temperatures in the MgAl2S4-type with a=393.9 pm and c=3843.2 pm (x=0.5) for the hexagonal cell. Both structures have been refined by the Rietveld-method. All phase boundaries are nearly independent from temperature.  相似文献   

8.
Powder X-ray diffraction results and macroscopic magnetic properties of new ternary RRh5Ge3 compounds (R=Sm, Gd, Tb) are reported. The compounds SmRh5Ge3 (a=2.2744(4) nm, c=0.3888(1) nm), GdRh5Ge3 (a=2.2711(5) nm, c=0.3872(1) nm) and TbRh5Ge3 (a=2.2628(7) nm, c=0.3851(1) nm) crystallize in the hexagonal SmRh5Ge3-type structure (space group P63/m; No. 176). The GdRh5Ge3 and TbRh5Ge3 compounds are Curie–Weiss paramagnets down to 5 K.  相似文献   

9.
A type of magnetocrystalline anisotropy and exchange interactions of the novel ternary R3(Fe, V)29 compounds (R = Y, Nd, Sm) have been investigated. The compounds are uniaxial ferromagnets with easy magnetization direction along the [ 0 1] axis of the monoclinic lattice at room temperature. The temperature variations of the magnetic moment and the first anisotropy constant for Y3(Fe, V)29 are presented. The first order magnetization process along the hard magnetization direction takes place for Sm3(Fe, V)29 at T < 120 K. A magnetic anomaly is detected in the temperature dependence of the a.c. susceptibility for Nd3(Fe, V)29 which can be related to a spin reorientation.  相似文献   

10.
The crystal structure of the U–Ni binary compound previously designated U5Ni7 was studied by X-ray single crystal diffraction showing that the exact formula is U11Ni16. Uranium and nickel atoms are distributed respectively on 5 and 6 Wyckoff positions of the trigonal space group R (n° 148), and the unit-cell dimensions in the hexagonal setting are: a=11.7786(4) Å, c=20.7485(8) Å. Magnetisation measurements indicate itinerant ferromagnetism below Tc=33 K for U11Ni16.  相似文献   

11.
To clarify the existence of metastable phases in the ZrO2–CeO2–CeO1.5 system, evolved-oxygen gas analyses, (EGA), by heating a single phase of t′ and t″ (Ce(1−x)ZrxO2) with various compositions, x, in a reducing gas and successive oxidation were carried out repeatedly. The oxygen release behaviour of the t′ and t″ phases was very complicated. The single κ phases, (Ce(1−x)ZrxO2) with the composition, x=0.5 and 0.6, which were obtained by oxidizing the resulting pyrochlore as a precursor in O2 gas at 873 K, exhibited a sharp oxygen release at the lowest temperature; the composition range of κ phase may be x=0.450.65. A new tetragonal phase t*, (Ce(1−x)ZrxO2), which was attained by cyclic redox process together with annealing in O2 gas at 1323 or 1423 K, exhibited a sharp oxygen release at the highest temperature; the composition range of t* phase may be as wide as x=0.200.65. A metastable solid solution expressed by a chemical formula of Ce(8−4y)Zr4yO(14−δ) (y=01) possessing a CaF2-related structure appeared on deoxidation of the t* phase. A ternary phase diagram containing the t* and Ce(8−4y)Zr4yO(14−δ) solid solution was proposed.  相似文献   

12.
The novel ternary rare-earth iron-rich interstitial compounds R3(Fe,Cr)29Xy (R=Nd, Sm and X=N, C) with the monoclinic Nd3(Fe,Ti)29 structure have been successfully synthesized. Introduction of the interstitial nitrogen and carbon atoms led to a relative volume expansion ΔV/V of about 6% and an enhancement of Curie temperatures Tc about 268 K for the nitride and about 139 K for the carbide, respectively. The Nd3Fe24.5Cr4.5Xy compounds have a planar anisotropy at room temperature. A first-order magnetization process (FOMP) with critical field Bcr=4.4 T and 3.1 T at room temperature were observed for the Nd-nitride and carbide compounds, respectively. The Sm3Fe24Cr5Xy compounds were found to have a large uniaxial anisotropy of about 18 T at 4.2 K and about 11 T at 293 K. A FOMP with Bcr=2.3 T was also observed in the Sm-nitride compounds at 4.2 K. Magnets with coercivity of μOjHc0.8 T at 293 K has been successfully developed from the Sm3Fe24Cr5Xy (X---N and C) phases.  相似文献   

13.
The crystal structure of Y3TaNi6+xAl26 (refined composition Y4TaNi6+[7]Al20+[6]) was determined by single-crystal X-ray diffraction (λ(Mo K) −0.71073 A. μ −17.827 mm1, F(000) = 700, T = 293 K, wR = 0.015 for [8] unique reflections). This new quaternary aluminide crystallizes with a cubic structure. Pearson code cP49-12.85, (221) Pm-3m-ji'gdba, a = 8.3600(1) Å. V = 584.28(2) Å, Z = 1, M1 = 1510.25, Dx = 4.292 mg mm1. The structure of YxTaNi6+xAl26 is filled-up substitution variant of the BaHg11 structure type with one additional atom site, partly occupied (around 15%) by Ni atoms, located at the centre of a cube formed by Al atoms. Distinct atom coordinates were refined for Ni and Al atoms on a site for which mixed occupation (approximately 50% Ni/50% Al) was found. The Ta atoms centre regular Al atom cuboctahedra, and the Y atoms 20-vertex polyhedra, formed by Al and Ni atoms, similar to those observed in CeMn4Al8 and YbFe2Al10.  相似文献   

14.
The crystal structure of the compound Sm4Pd4Si3 was determined by the single-crystal method (KM-4 automatic diffractometer, Mo K radiation. Sm4Pd4Si4 has the monoclinic Nd4Rh4Ge, type structure: space C2/c, mC44 (No. 15). a = 20.693(6), B = 5.584(1), C = 7.699(2) Å, β = 109.48(3)°, V = 838 Å, Z = 4, μ - 36.23 mm1, R =F = 0.0537, R F = 0.0435 for 1652 unique reflections. The coordination numbers of samarium atoms are 17 and 18. For palladium and silicon atoms icosahedra and trigonal prisms with additional atoms are typical as coordination polyhedra. The structure of Sm4Pd4Si4 is composed of fragments of the YPd2Si and Y1Rh2Si2 structure in a ratio 1:1.  相似文献   

15.
The compounds RMn2Ge2 (R = Tb, Ho, Er, Tm, Lu) have been investigated by neutron diffraction. TbMn2Ge2 is a collinear ferrimagnet with the Mn and Tb moment aligned along the c axis (μTB = 8.81(59) μB: μMn = 2.21(44) μB). HoMn2Ge2 exhibits incommensurale ordering below 2.1 K characterized by two wavevectors at 1.3 K: q1 = (0.1543(4), 0.1543(4), 0) and q2 = (0.210(1), 0.007(1), 0). The Mn sublattice remains antiferromagnetic down to 1.3 K (μMn = 2.38(6) μB). The Er moments order ferromagnetically below 5.5 K in ErMn2Ge2Mn = 6.81(31) μB). The moments are perpendicular to the c axis. The Mn sublattice remains antiferromagnetic down to 1.8 K (μMn = 2.34(18) μB). The magnetic structure of TmMn2Ge2 is characterized by the propagation vector (0.0.1/2). the Tm moments lying in the basal plane. The ordering of the Tm moments yields a canting of the Mn moments (τ = 21(3)°); μTm = 6.63(18) μB; μMn = 2.28(27) μB). The antiferromagnetic structure of LuMn2Ge2 has been determined (μMn = 2.32(14) μB). The evolution of the magnetic properties of the heavy rare earth compounds RMn2Ge2 is discussed.  相似文献   

16.
A new ternary compound of composition LaMg2Ni has been found and investigated with respect to structure and hydrogenation properties. It crystallizes with the orthorhombic MgAl2Cu type structure (space group Cmcm, a=4.2266(6), b=10.303(1), c=8.360(1) Å; V=364.0(1) Å3; Z=4) and absorbs hydrogen near ambient conditions (<200 °C, <8 bar) thereby forming the quaternary metal hydride LaMg2NiH7. Neutron powder diffraction on the deuteride revealed a monoclinic distorted metal atom substructure (LaMg2NiD7: space group P21/c, a=13.9789(7), b=4.7026(2), c=16.0251(8) Å; β=125.240(3)°, V=860.39(8) Å3; Z=8) that contains two symmetry independent tetrahedral [NiD4]4− complexes with Ni–D bond lengths in the range 1.49–1.64 Å, and six Danions in tetrahedral metal configuration with bond distances in the ranges 1.82–2.65 Å (Mg) and 2.33–2.59 Å (La). The compound constitutes a link between metallic ‘interstitial’ hydrides and non-metallic ‘complex’ metal hydrides.  相似文献   

17.
Neutron diffraction measurements have been performed on the ternary compounds YMn6Ge6 and LuMn6Sn6 of HfFe6Ge6-type structure (space group, P6/mmm). This structure can be described as a filled derivative of the CoSn-B35-type structure. Each of the rare earth (R) and Mn atoms are successively distributed in alternate layers, stacked along the c axis with the sequence Mn---R---Mn---Mn---R---Mn. At 300 K, both compounds exhibit collinear antiferromagnetic arrangements and the magnetic structures consist of a stacking of ferromagnetic (001) layers of Mn with the coupling sequence Mn(+)---R---Mn(−)---Mn(−)---R---Mn(+) (μMn ≈ 1.33(1)μB and 1.82(3)μB for LuMn6Sn6 and YMn6Ge6 respectively). For LuMn6Sn6, the magnetic moments lie in the (001) plane, while they are along the c axis in YMn6Ge6. At low temperature, a spin reorientation process occurs in both compounds, yielding incommensurate antiferromagnetic arrangements. For YMn6Ge6 (Tt ≈ 80 K), the Mn moments form a double-cone structure with a periodicity of about 105 Å (μMn = 1.95(4)μB at 2 K), while only preliminary results are available for LuMn6Sn6 below about 200 K. The results are compared with those obtained on the CoSnB35-type structure binary compounds FeSn and FeGe, on one hand, and the RMn6Sn6 compounds, on the other hand.  相似文献   

18.
We have measured the temperature dependence of far-infrared reflectance of β”-(BEDT-TTF)2AuBr2 to investigate the possibility of SDW transition. The polarized reflectance in two-dimensional BEDT-TTF layers shows a highly anisotropic feature of conduction band. Both the Ec and the Ec reflectance line-shapes, which are Drude-like at room temperature, demonstrate a clear dip below 100 cm−1 even at 40 K. The frequency-dependent conductivity at 7 K indicates the presence of a single-particle gap at 2Δ = 130 cm−1 assignable to the SDW nesting along c. The nesting fluctuation exists already at room temperature because of a strongly one-dimensional nature of the band dispersion.  相似文献   

19.
Investigations were made by neutron diffraction on Zr6CoAs2-type (space group no. 189) Ho6−xErxMnBi2 solid solutions. The ferromagnetic ordering temperature decreases from Ho6MnBi2 (TC = 200(6) K) to Er6MnBi2 (TC = 100(4) K), whereas temperatures of ferrimagnetic (or antiferrimagnetic) ordering (TFerri and TAFerri) are found to have non-monotonic dependences on the content of Er: TFerri = 58(4) K for Ho6MnBi2, TFerri = 162(4) K for Ho4.5Er1.5MnBi2, TFerri = 150(4) K for Ho3Er3MnBi2, TAFerri = 78(4) K for Ho1.5Er4.5MnBi2 and TAFerri = 52(4) K for Er6MnBi2.

In these compounds, no local moment was detected on the manganese ion site, except for Ho1.5Er4.5MnBi2 and Er6MnBi2 compounds. The manganese magnetic moments (μMn) is 1.5μB and these are antiferromagnetically coupled with that of rare earth moments.  相似文献   


20.
A novel molybdenum diphosphate, Mo1.3O(P2O7), was obtained by electrochemical lithium deintercalation. The diphosphate crystallises in space group I2/a with the lattice parameters a=22.88(1), b=22.94(2), c=4.832(1) Å, γ=90.36°, Z=8. Its original framework is built up from MoO6 octahedra, P2O7 groups and also from MoO4, Mo2O4 and Mo3O8 units containing Mo2 and Mo3 clusters. These polyhedra delimit large octagonal and z-shaped tunnels running along c, in which the inserted cations may be located.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号