首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
等离子喷涂生物活性涂层的梯度结构表征   总被引:1,自引:0,他引:1  
采用自动控制的等离子喷涂系统,在钛合金基体上制备出生物活性梯度涂层,利用纳米硬度计、扫描电镜等对生物活性涂层的梯度结构进行分析.实验结果表明:金属基体与陶瓷界面区域的弹性模量和硬度呈梯度变化;生物活性功能涂层表面分布着不同尺寸范围的孔洞,具有典型的多孔结构特征,整个涂层沿垂直基体方向从底层致密结构向表面层多孔结构过渡;涂层成分底层生物稳定性至表面层生物活性呈梯度变化,涂层表面成分为生物活性的羟基磷灰石.涂层的这种结构特征有利于改善生物活性涂层的综合性能,提高涂层与基体的结合强度,根据ASTM C633-79测试生物活性涂层与基体的结合强度,结合强度达到48.6 MPa.  相似文献   

2.
羟基磷灰石生物活性梯度涂层材料的界面特点   总被引:6,自引:0,他引:6  
用透射电子显微镜对钛合金基体等离子喷涂羟基磷灰石 (HA)生物活性梯度涂层的界面进行了观察与分析。结果表明 :经热处理后生物活性梯度涂层的结晶程度明显提高 ,涂层中存在HA晶体、β Ca3(PO4 ) 2 晶体以及中间相CaTiO3 晶体。涂层和基体的界面结合为冶金化学结合 ,HA涂层和基体Ti间存在过渡相ZrO2 ,过渡相ZrO2 的存在有利于提高涂层和基体之间的界面结合力。  相似文献   

3.
阴极旋转电沉积生物陶瓷涂层的工艺研究   总被引:1,自引:1,他引:0  
王涛  于峰  李慕勤 《表面技术》2005,34(5):49-52
采用一种电化学沉积磷酸钙生物陶瓷涂层的新方法--阴极旋转电沉积工艺.通过测定涂层的XRD、界面结合强度、SEM观察表面与断面,研究了工艺的沉积特性及机理.在该工艺中,作为金属基体的阴极始终处于旋转状态,制备出比普通电沉积工艺更致密、均匀、尺寸更小的磷酸钙生物活性涂层,通过控制旋转速度制备出内部致密、外部多孔的梯度涂层,经后处理转化为羟基磷灰石涂层.通过控制旋转速度获得的梯度涂层,界面结合强度优于普通电沉积生物涂层.模拟体液浸泡后,在涂层表面先析出纳米粒子,之后成长为针状、网状,最后连接成一层.阴级旋转电沉积生物陶瓷梯度涂层具有较高的抗溶解性和生物活性.  相似文献   

4.
溶胶凝胶法制备TiO_2/HA复合生物活性涂层及其体外活性   总被引:1,自引:0,他引:1  
通过溶胶凝胶法在纯钛基体上制备了羟基磷灰石(HA)/TiO2复合生物活性涂层。HA和TiO2溶胶由前驱体制得,按不同摩尔比直接混合两种溶胶来制备混合溶胶。HA可以提高钛基的生物活性,TiO2可以提高涂层与基体的物理、化学相容性和结合强度。粘结拉伸结果表明,复合涂层与基体结合良好,比纯HA涂层与基体的结合强度提高约47%。复合涂层试样于SBF中浸泡4、7和14d的SEM分析结果表明,复合涂层表面的类骨磷灰石生成量较高。成骨细胞实验结果表明,复合涂层上细胞铺展良好。  相似文献   

5.
羟基磷灰石生物涂层材料界面的电镜观察与分析   总被引:1,自引:1,他引:0  
用扫描电子显微镜和透射电子显微镜对未经热处理的钛合金基体等离子喷涂羟基磷灰石生物材料的显微结构、相组成和界面结合进行了观察与分析. 结果表明 HA涂层的显微结构疏松, 内部有裂纹和孔洞; 涂层的相结构中, HA以结晶态和非晶态两种形态存在; HA和基体的界面结合是以物理结合为主, 界面明显, 没有过渡相, 说明基体和涂层之间化学反应不明显.  相似文献   

6.
微束等离子喷涂氧化锆增韧羟基磷灰石复合涂层   总被引:1,自引:0,他引:1       下载免费PDF全文
采用微束等离子喷涂方法,在Ti-6Al-4V基体上制备了羟基磷灰石 氧化锆(70HA-30ZrO2,质量分数,%)复合涂层.将复合涂层置于模拟体液中分别浸泡了3,7,14,28 d并观察表面磷灰石的生长情况以评价涂层生物活性.采用扫描电镜(SEM)和X射线衍射(XRD)分析技术对涂层浸泡前后的表面形貌和相组成进行了研究.结果表明,涂层中ZrO2主要以立方相存在;喷涂过程中羟基磷灰石(HA)出现了一定的分解,产生大量的α-Ca3(PO4)2杂质相.HA涂层熔化效果很好,但涂层中有未熔化的ZrO2颗粒.涂层在模拟体液中浸泡28 d后表面可以形成磷灰石,说明涂层具有很好的生物活性.  相似文献   

7.
为了获得与基体结合强度高、生物活性好的羟基磷灰石(HAP)涂层,通过种籽层水热沉积方法在钛合金表面生长HAP,首先纳米尺寸的钙磷盐通过微弧氧化技术在钛金属表面形成,此种籽层在随后的水热沉积过程中促进了HAP的诱导沉积。讨论了络合剂和种籽层对HAP的形貌和结构的调控。采用此方法制备的生物活性梯度涂层无裂纹、涂层厚度分布均匀,与基体具有高的结合强度,HAP呈现良好的结晶性,并具有沿c轴的择优取向,此HAP涂层表现出优良的生物活性,有利于促进骨的生长。  相似文献   

8.
羟基磷灰石由于其良好的生物活性,被广泛的用作医用植入体的表面涂层材料.采用微束等离子喷涂(Microplasma Spraying,MPS)I艺在Ti-6Al-4V基体上制备羟基磷灰石涂层,通过扫描电镜(SEM)、X射线衍射(XRD)和傅里叶红外光谱(FTIR)分析了热处理对涂层相组成和表面形貌的影响规律.研究表明:微束等离子喷涂制备的羟基磷灰石涂层在经过热处理后结晶度提高,并且非晶相和杂质相转化成为HA结晶相.同时,羟基和磷酸根的完整性得到了恢复.过高的热处理温度易引起涂层裂纹等缺陷的增加,也容易造成羟基脱离造成HA分解.合理的热处理温度范围为600~700℃,保温时间为3 h.  相似文献   

9.
在316L不锈钢基体表面采用溶胶-凝胶法和多次提拉法涂覆羟基磷灰石(HA)涂层并对涂层进行了物相、形貌、结合力和耐腐蚀性能的表征,研究了退火温度对涂层性能的影响.结果表明,经400~500℃退火处理,能形成晶化程度不高、晶粒细小的多孔结构羟基磷灰石涂层;升高退火温度可提高HA晶化程度和界面结合力;HA涂层提高了不锈钢的抗侵蚀能力.  相似文献   

10.
总结了现有钛生物种植体表面羟基磷灰石生成技术及其优缺点;并针对钛生物种植体表面羟基磷灰石涂层在制备过程中存在的界面结合强度低、涂层内的残余应力以及膜层中羟基磷灰石(HA)的分布密度等问题,进行归纳总结。  相似文献   

11.
将生物活性陶瓷涂覆在钛合金表面可以综合金属和生物活性陶瓷的优点,通过对金属基体上陶瓷涂层的设计可以改善涂层与基体的结合强度.本文对钛合金表面不同类型涂层的设计进行了综合评述,并对如何提高生物活性陶瓷涂层与基体的界面结合强度提出建议.  相似文献   

12.
金属基磷酸钙陶瓷涂层的界面研究进展   总被引:1,自引:0,他引:1  
论述了金属基磷酸钙陶瓷涂层的界面力学环境及界面物理化学特性,并为改善涂层与基体的界面结合强度及材料稳定性,对金属基磷酸钙涂层的设计进行了综合评述,提出涂层与基体界面优化设计的要点是合理设计过渡层,注重多种改善途径的结合及预先评定材料界面设计的可行性.  相似文献   

13.
研究了等离子喷涂法制备ZrO2Ti系功能梯度涂层。结果表明,采用等离子喷涂工艺制备功能梯度涂层是可行的,涂层与基体除以机械咬合方式结合外,还存在着少量冶金化学反应结合,添加Ni/Al和SiO2有助于提高涂层的结合强度  相似文献   

14.
为改善TiO2溅射靶材主要依赖进口的局面,采用大气等离子喷涂技术在不锈钢SUS304平板基体及管状基体上制备了TiO2涂层。利用扫描电子显微镜对涂层形貌进行了观察,并对涂层与基体的结合强度、涂层孔隙率及抗热震性能分别进行了表征。结果表明:粉末熔化及铺展良好,截面可见典型层状结构。涂层与基体以机械结合为主,断裂基本发生在基体与粘结层界面处;涂层的孔隙率较低,同时具有良好的抗热震性能。厚涂层制备过程中,采用循环水冷却方法对不锈钢SUS304管状基体进行冷却,涂层沉积速度快且无开裂和脱落,涂层厚度可达8 mm。通过对冷却装置的改进及喷涂工艺的进一步优化,有望在大尺度管状基体上制备厚涂层以满足溅射蒸镀辊的需要。  相似文献   

15.
采用冷喷涂技术在304不锈钢表面制备了TC4钛合金涂层,通过扫描电子显微镜观察了涂层的形貌、组织结构,并利用电化学方法研究了涂层的腐蚀电化学特征。研究结果表明,冷喷涂制备的TC4钛合金涂层致密性存在较为明显的梯度现象,靠近基体的涂层密度明显高于表面;涂层喷涂过程没有出现明显氧化现象,与基体的结合强度可达20 MPa左右;涂层的耐腐蚀性能优于304不锈钢,可大大提升不锈钢材料在海洋环境中的耐点蚀性能。  相似文献   

16.
Ti coating on A3 steel was successfully prepared by direct electrochemical reduction of high-velocity oxy-fuel (HVOF) thermally sprayed and room-temperature dip-coating titanium dioxide coating on A3 steel in molten CaCl2 at 850 °C. The interfacial microstructure and mutual diffusion between coating and steel substrate were investigated using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. The results show that the precursory TiO2 coating prepared by HVOF has closer contact and better adhesion with the A3 steel substrate. After electrolysis, all of the electro-generated Ti coatings show intact contact with the substrates, regardless of the original contact situation between TiO2 layer and the steel substrate in the precursors. The inter-diffusion between the iron substrate and the reduced titanium takes place at the interface. The results demonstrate the possibility of the surface electrochemical metallurgy (SECM) is a promising surface engineering and additive manufacturing method.  相似文献   

17.
Hydroxyapatite (HAp) coating on titanium (Ti) or Ti alloy implant materials is one of the important technologies for improving the bioactivity of their surface. We recently developed a new HAp coating method using two laser beams, laser-assisted laser ablation method (LALA method). In this method, two excimer lasers were used. One laser beam from KrF laser, the ablation laser, is used for ablation of a HAp target. The other beam from ArF laser, the assist laser, is used to irradiate a Ti substrate surface during formation of the HAp coating. The assist laser plays an important role in the formation of a crystalline HAp coating and improves the strength of adhesion to the Ti substrate.The coating quality varied with the timing of the assist laser irradiation. A coating deposited with a long assist laser delay contained a large amorphous component. High-quality coatings were obtained with delay time between 2 and 10 μs.Using the present method, we succeeded in fabricating thin (≤1 μm) HAp coatings with high crystallinity and high adhesion strength.  相似文献   

18.
预沉积Cu 膜对不锈钢基体上沉积C-90%SiC 涂层的影响   总被引:1,自引:1,他引:0  
C-90%SiC 涂层涂覆在不锈钢废物包装桶的内壁上,可以有效防止放射性废物中氚的渗透,涂层与不锈钢基体材料的粘着性能是此类阻氚涂层使用寿命长短的关键。采用中频磁控溅射结合离子束混合技术,在不锈钢基体上沉积C-90%SiC 涂层,探索提高涂层粘着性能的方法,通过二次离子质谱和SEM 形貌表征涂层与基体之间的结合性能。结果表明,预沉积一层Cu 膜,可以使涂层与基体之间的元素混合效应大大提高,有利于提高涂层的粘着性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号