首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
钢管斜轧穿孔过程的三维有限元数值模拟及分析   总被引:2,自引:0,他引:2  
本文以某厂狄舍尔(D iescher)穿孔机为研究对象,应用DEFORM-3D非线性有限元分析软件对实心圆坯二辊斜轧穿孔过程进行了三维热力耦合数值模拟,通过分析圆坯的应力应变场和温度场及顶头穿孔过程中的温度场分布特征,得出管坯最大应力、应变、温度最高处位于管坯与轧辊、导盘接触区。顶头轴向温度梯度明显,头部温度最高。为改善顶头的工作环境和提高其使用寿命提供了理论依据。  相似文献   

2.
高温合金圆坯穿孔时力和变形参数的测定   总被引:1,自引:1,他引:1  
田党  张根良 《钢管》1993,(1):7-10
φ30mm二辊斜轧穿孔机使用高温合金圆坯穿孔,在不同加热温度、轧辊转速、辊面角和前进角条件下,测定了轧辊入口锥和出口锥轧制力、顶头的轴向力、穿孔时间和坯料扭转变形程度。  相似文献   

3.
为了解决镁合金无缝管难加工问题,研究了AZ31镁合金斜轧穿孔制备管坯新工艺。根据镁合金热加工本构关系确定加工温度和应变率范围为300~450℃、0.001~1 s~(-1),根据斜轧理论与现有的三辊斜轧设备初步确定工艺参数,对Φ40 mm×300 mm镁合金棒材进行穿孔过程热力耦合数值模拟及实验研究,取穿后毛管试样进行金相分析。结果表明:采用斜轧穿孔方式完全可以制备AZ31镁合金无缝管;在400℃下,选择合适的顶头前伸量、送进角、轧辊转速、孔喉直径能够顺利穿制Φ40 mm×5.5 mm×615 mm镁合金毛管;轧后组织成等轴状均匀分布且晶粒明显细化,达到3μm,相应力学性能得到改善。此工艺可代替传统挤压工序生产无缝镁合金管,提高生产效率、降低成本,便于后续成品管的生产。  相似文献   

4.
提出采用三辊斜轧穿孔方法制备镁合金无缝管,基于AZ31镁合金塑性变形特点和斜轧穿孔成形原理分析,建立AZ31镁合金的力学模型,设定AZ31镁合金斜轧穿孔的工艺和模具参数。利用Deform-3D有限元分析软件对AZ31镁合金在300~400℃温度范围内进行斜轧穿孔数值模拟,得到各个成形阶段坯料的等效应力分布和金属流动速度矢量图。模拟结果表明在350℃、0.01 s-1变形条件下,AZ31镁合金斜轧穿孔保持稳定轧制。根据模拟结果进行试验验证,结果表明在此工艺条件下斜轧穿孔后的AZ31镁合金管力学性能良好,验证了斜轧穿孔制备镁合金无缝管的可行性和有效性,为镁合金无缝管新的生产方法提供理论依据。  相似文献   

5.
针对镍基高温合金因加工硬化严重成形时极易产生破裂和起皱等典型缺陷的问题,以锥筒形壳体类零件为对象,提出了一种由锥形预制坯经过真空固溶处理后拉深旋压成形锥筒形件的方法,并对其成形机理进行了研究。基于Abaqus/Explicit平台,建立了锥筒形件拉深旋压有限元模型,分析了成形过程中的瞬态等效应力、等效塑性应变、切向应力、壁厚及三向应变分布规律。结果表明:在旋压成形过程中,最大瞬态等效应力位于旋轮接触区及附近区域、最大瞬态等效塑性应变位于坯料口部;瞬态切向压应力最大值位于旋轮接触区,而瞬态切向拉应力最大值位于旋轮接触区附近的两侧区域。筒形段中部壁厚减薄,而坯料口部壁厚增厚。旋压成形试验表明,锥形预制坯经拉深旋压后可获得壁厚均匀的锥筒形件。  相似文献   

6.
采用GLeeble-3500热模拟机对新型海洋用钛合金Ti80进行压缩试验,研究了该合金流动应力在不同变形参数下的变化,并建立了高温本构方程和热加工图。由加工图中优化出的高功率耗散安全区,初步判断斜轧穿孔法制备Ti80合金无缝管坯时的棒料初始温度;并由有限元模拟及物理实验予以验证。结果表明:在同一应变速率下,Ti80合金流动应力对温度的敏感程度不同,在两相区变形,流变应力会随温度的降低而急剧增大;在单相区变形,流动应力则相差不大。建立的应变补偿型Arrhenius双曲正弦函数,经验证能够准确预测流动应力的变化。所绘热加工图明确指出了Ti80合金热塑性成型时两个优化的工艺窗口:一是在两相区低应变速率,即925-975℃/0.01-0.1s-1附近;二是在单相区中等应变率,即1050-1100℃/0.1-1s-1附近。进一步对棒料初始温度在950、1050和1100℃条件下的斜轧穿孔过程进行三维热力耦合有限元模拟,发现950℃穿孔时顶头轴向力会激增为单相区穿孔时的5-6倍,从而导致扎卡;而单相区穿孔均能顺利进行。为降低能耗,最终确定棒料初始温度1050℃为最优穿孔温度,并且在狄舍尔斜轧穿孔机上一火次成功试制出Ti80合金无缝管坯。  相似文献   

7.
采用自行设计的五段式扩径顶头的大扩径斜轧穿孔工艺,将实心圆管坯一次穿制成大口径空心毛管,可以将扩径率提高至70%,突破了锥形辊穿孔扩径率30%的极限,大大减少能源消耗,提高金属成材率,减少管坯规格,显著降低大口径热轧无缝钢管的生产成本。本文借助于有限元分析软件Simufact对大扩径斜轧穿孔过程进行三维热力耦合模拟,分析大扩径斜轧穿孔过程中的应力/应变状态、力能参数、运动学参数、温度分布、以及大口径毛管的尺寸精度等,为大扩径斜轧穿孔的工具设计及调整参数优化提供科学依据。  相似文献   

8.
采用热力耦合方法对Ti-6Al-4V合金进行了多道次热轧模拟,研究了不同道次温度和等效塑性应变的分布特点。模拟结果表明,轧制过程表面温度低于心部的温度,随轧制道次的增加,表面温度整体表现为降低过程,中心温度整体表现为先升高后降低过程。中心位置比表面位置的等效塑性应变大,表面位置与中心位置的等效塑性应变均随变形道次的增加而增大。结果表明,随着轧制道次的增加,中心显微组织变形大于表面。中心区域组织易于发生动态球化。  相似文献   

9.
文摘     
《钢管》1992,(5)
<正> 采用曼内斯曼穿孔机穿孔,毛管内表面产生有呈螺旋分布的半圆环状裂纹,严重影响成材率和生产率的提高。对此,日本川崎制铁公司钢铁研究所对裂纹缺陷产生机理进行了模拟试验,试验采用焊接热循环试验,使用SUS 316L不锈钢管坯。当压缩率为90%、加热温度高于1300℃时,金属塑性处于零塑性区。毛管穿孔采用的是简化二次元对称轴热传导解析模型,模拟出材料、轧辊、顶头温度曲线。当毛管内表面温度超过1300℃以上时,毛管内表面产生裂纹,这种裂纹属于晶间裂纹。  相似文献   

10.
徐如涛  李斌  王克鲁 《热加工工艺》2012,41(19):92-93,97
用Deform-3D有限元软件对钛合金环件轧制成形过程进行了模拟,分析了环件成形过程中的温度分布规律.结果表明:高温区在中心,低温区在外表面;由于受轴向轧制力的影响,较高的温度出现在端面.  相似文献   

11.
The rheology feature of Sb, Bi melt and alloys was studied using coaxial cylinder high-temperature viscometer. The results showed that the curve of torsion-rotational speed for Sb melt presents a linear relation in all measured temperature ranges, whereas for the Bi melt, the curve presents obvious non-Newtonian feature within the low temperature range and at relative high shear stress. The rheology feature of Sb80Bi20 and Sb20Bi80 alloy melts was well correlated with that of Sb and Bi, respectively. It is considered that the rheology behavior of Sb melt plays a crucial role in Sb80Bi20 alloy and that of Bi melt plays a crucial role in Sb20Bi80 alloy.  相似文献   

12.
The effect of heat treatment on the microstructures and mechanical properties of a newly developed austenitic heat resistant steel(named as T8 alloy) for ultra-supercritical applications have been studied. Results show that the main phases in the alloy after solution treatment are γ and primary MX. Subsequent aging treatment causes the precipitation of M_(23)C_6 carbides along the grain boundaries and a small number of nanoscale MX inside the grains. In addition, with increasing the aging temperature and time, the morphology of M_(23)C_6 carbides changes from semi-continuous chain to continuous network.Compared with a commercial HR3C alloy, T8 alloy has comparable tensile strength, but higher stress rupture strength. The dominant cracking mechanism of the alloy during tensile test at room temperature is transgranular, while at high temperature, intergranular cracking becomes the main cracking mode, which may be caused by the precipitation of continuous M_(23)C_6 carbides along the grain boundaries. Typical intergranular cracking is the dominant cracking mode of the alloy at all stress rupture tests.  相似文献   

13.
14.
《中国铸造》2014,(6):540-541
Organized by Suppliers China Co., Ltd and co-organized by the National Technical Committee 54 on Foundry of Standardization Administration of China, the 15th Global Foundry Sourcing Conference 2014 (hereinafter referred to as FSC 2014) was successfully held on Sep. 23rd in Grand Regency Hotel, Qingdao. More than 500 delegates from home and abroad attended this conference, including over 130 purchasers from 20 countries and 380 domestic and foreign suppliers.  相似文献   

15.
By rolling and nitriding processes, 0.23- to 0.3-mm-thick grain-oriented 6.5 wt% silicon steel sheets were produced. The core losses of grain-oriented 6.5 wt% silicon steel at frequencies ranging from 400 Hz to 20 k Hz were lower than that of the grain-oriented 3 wt% silicon steel with the same thickness by 16.6–35.8%. The secondary recrystallization behavior was investigated by scanning electron microscopy, energy-dispersive spectroscopy, and electron backscattered diffraction. The results show that the secondary recrystallization in high-silicon steel sheets develops more completely as the nitrogen content increases after nitriding, secondary recrystallized grain sizes become larger, and the sharpness of Goss texture increases. Because more {110}116 grains in the subsurface and the central layer of the sheets have a lot of 20°–45° high-energy boundaries in addition to Goss grains, {110}116 can be the main component through selective growth during secondary recrystallization when the inhibitor quantity is not enough and inhibitor intensity is weaker. The increases in nitrogen content can increase the inhibitor intensity and hinder abnormal growth of a mount of {110}116 grains and therefore enhance the sharpness of Goss texture.  相似文献   

16.
LASER CLADDED TiCN COATINGS ON THE SURFACE OF TITANIUM   总被引:3,自引:0,他引:3  
Laser cladded coatings of TiCN were produced on the surface of titanium. To obtain the optimal techniques, several conditions were tested by varying the laser scanning rate. The choice of shielding gas was also studied. The cladded coatings were then evaluated from the surface mechanics point of view based on their microhardness. The microstructure of some interesting samples was investigated by optical micrographs (OM). The results showed that under the condition of fixed pulse frequency and pulse width, the laser scanning rate and the shielding gas are the main factors influencing the components of coatings. TiCN coatings were decompounded and oxidized during the cladding process in the condition of no shielding gas of N2. X-ray diffraction results indicated that the composite coatings composed of TiCN, TiC, Ti2N, and TiO2 were produced using appropriate techniques. The results indicated that the best condition in terms of the surface microhardness is obtained when the scanning rate is 1.5mm / s, the pulse frequency is 15Hz, the pulse width is 3.0ms, and N2 is chosen as the shielding gas. The microhardness of the composite coatings is about 1331kg · mm - 2, which is about 4 times that of the substrate. The optical micrographs indicated that the cladding zone is made up of TiCN, TiO2, and some interdendritic Ti, but the diffusion zone mainly consists of the dendrites phase, and the cladded depth is about 80m, which is more than 2 times that of the laser nitrided sample. There were no microcracks or air bubbles in the cladded sample, which was cladded using the above optimal techniques.  相似文献   

17.
X80 pipeline steel plates were friction stir welded(FSW) under air, water, liquid CO_2 + water, and liquid CO_2 cooling conditions, producing defect-free welds. The microstructural evolution and mechanical properties of these FSW joints were studied. Coarse granular bainite was observed in the nugget zone(NZ) under air cooling, and lath bainite and lath martensite increased signifi cantly as the cooling medium temperature reduced. In particular, under the liquid CO_2 cooling condition, a dual phase structure of lath martensite and fi ne ferrite appeared in the NZ. Compared to the case under air cooling, a strong shear texture was identifi ed in the NZs under other rapid cooling conditions, because the partial deformation at elevated temperature was retained through higher cooling rates. Under liquid CO_2 cooling, the highest transverse tensile strength and elongation of the joint reached 92% and 82% of those of the basal metal(BM), respectively, due to the weak tempering softening. A maximum impact energy of up to 93% of that of the BM was obtained in the NZ under liquid CO_2 cooling, which was attributed to the operation of the dual phase of lath martensite and fi ne ferrite.  相似文献   

18.
INDUSTRY NEWS     
《中国铸造》2014,(3):215-217
China Securities News reported on March 21, 2014: Guangdong Hongtu Wuhan Die Casting Co., Ltd. (Wuhan Hongtu), a wholly owned subsidiary of Guangdong Hongtu Technology (Holdings) Co., Ltd., held a groundbreaking ceremony recently. With the registered capital of 50 million Yuan, Wuhan Hongtu has a total land area of 100,000 square meters and a plant construction area of 72,000 square meters. It is expected to have a production capacity of about 30,000 tonnes of aluminum castings annually after it is put into production.  相似文献   

19.
Mg–Zn–Ag alloys have been extensively studied in recent years for potential biodegradable implants due to their unique mechanical properties,biodegradability and biocompatibility.In the present study,Mg–3Zn-x Ag(wt%,x=0.2,0.5 and0.8)alloys with single-phase crystal structure were prepared by backward extrusion at 340°C.The addition of Ag element into Mg–3Zn slightly influences the ultimate tensile strength and microstructure,but the elongation firstly increases from12%to 19.8%and then decreases from 19.8%to 9.9%with the increment of Ag concentration.The tensile yield strength,ultimate tensile strength and elongation of Mg–3Zn–0.2Ag alloy reach up to 142,234 MPa and 19.8%,respectively,which are the best mechanical performance of Mg–Zn–Ag alloys in the present work.The extruded Mg–3Zn–0.2Ag alloy also possesses the best corrosion behavior with the corresponding corrosion rate of 3.2 mm/year in immersion test,which could be explained by the single-phase and uniformly distributed grain structure,and the fewer twinning.  相似文献   

20.
Two new classes of growth morphologies, called doublons and seaweed, were simulated using a phase-field method. The evolution of doublon and seaweed morphologies was obtained in directional solidification. The influence of orientation and velocity on the growth morphology was investigated. It was indicated that doublons preferred growing with its crystallographic axis aligned with the heat flow direction. Seaweed, on the other hand, could be obtained by tilting the crystalline axis to 45°. Stable doublons could only exist in a range of velocity regime. Beyond this regime the patterns formed would be unstable. The simulation results agreed with the reported experimental results qualitatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号