首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
采用金相显微镜、SEM及EDS等分析手段对Cu/Al冷轧复合界面结合机理进行研究,建立扩散退火阶段不同轧制压下率时的扩散层生长动力学方程,并探讨了不同压下率对界面扩散层生长的影响。结果表明,轧制复合阶段界面形成激活中心数量随压下率的升高而增加,当压下率为75%时达到峰值。另外,压下率在退火温度较高时对扩散层生长影响显著。  相似文献   

2.
轧制复合电缆用Cu/Al复合材料变形规律研究   总被引:2,自引:1,他引:1  
采用三步法复合工艺制备了电缆用Cu/Al复合板,分析了冷轧复合过程中Cu/Al复合板变形区的特点,研究了Cu层与Al层厚度比为1∶4时各组元压下率与总压下率的关系.将Cu/Al双金属变形区分为3个区,建立了基于原始坯料层厚比条件下的轧制复合Cu/Al复合板厚度模型.  相似文献   

3.
研究异步冷轧退火工艺制备的Al/Cu多层复合材料的组织演化及其对力学性能的影响。采用SEM和TEM分析界面组织,用界面剥离实验和拉伸实验测试复合板的力学性能。结果表明:异步冷轧复合工艺可以获得界面紧密连接的超细晶多层复合材料。退火促进Al和Cu连接界面上金属原子的扩散,甚至导致金属间化合物的生成。复合板的连接界面在300°C退火时发生固溶强化现象,界面的连接强度达到最大,但是在更高温度退火时界面生成的金属间化合物导致连接性能急剧下降。在300°C退火时,复合板组织发生再结晶并获得较高的抗拉强度;而在350°C退火时,界面存在亚微米厚度的过渡层,有利于位错滑移运动,因此复合板获得较高的伸长率。  相似文献   

4.
电子封装用Cu/Mo/Cu复合材料的工艺研究   总被引:1,自引:0,他引:1  
研究了浸涂助复剂(铝基合金)和室温轧制工艺对Cu/Mo/Cu复合界面结合强度的影响,简述了Cu/Mo/Cu复合板室温轧制成形工艺过程,详细分析了表面和界面清理、初道次轧制临界变形率及热处理工艺等因素对复合板结合强度的影响。实验结果得出,钼板浸涂Al—Mn—Zn—Sn合金助复剂后的热处理温度为800~850℃;初道次轧制变形率为45%最佳;复合轧制后合适的退火工艺为450℃,保温60min。  相似文献   

5.
采用轧制、中间退火和扩散退火的组合工艺,制备了6种不同工艺下的6061/7075铝合金层状金属复合板,分析了不同工艺下复合板的组织特征和形成原因,对比研究了不同工艺下复合板的力学性能。结果表明:冷轧、热轧均能获得沿轧向分布的纤维度良好的晶粒组织,恰当的中间退火和扩散退火加速了两侧基体金属的元素扩散,促进冶金结合。但热轧不存在轧制变形后的加工硬化,力学性能较冷轧复合板差;结合应力-应变曲线可知,冷轧+冷轧+中间退火+冷轧+扩散退火工艺下获得的6061/7075复合板综合性能最高,抗拉强度为214 MPa,伸长率20%,弹性模量8. 026 GPa。  相似文献   

6.
采用热轧+温轧方法制备Cu/Mo/Cu复合板,研究轧制工艺对复合板结合界面及组元厚度配比的影响。结果表明:经过轧制变形后,铜钼界面实现紧密结合且结合机制为齿状啮合,铜层外表面和靠近界面层的晶粒比中部细小;随着变形量的增加,铜层等轴状晶粒沿轧制方向被拉伸,界面结合效果明显改善,且由齿状变得较为平直。分析组元厚度配比,铜层变形量较钼层的大,随着总压下量的增加,组元压下率的差值减小,变形量逐渐趋于一致;首次提出了Cu/Mo/Cu三层复合板厚度配比的关系,为实际选择原料提供依据  相似文献   

7.
《塑性工程学报》2015,(2):68-73
采用"热轧+冷轧"复合制备4343/4A60两层Al/Al合金带,采用"冷轧+轧后退火"制备4343/4A60/08Al钢三层铝/铝/钢复合带材。利用金相、扫描、能谱观察分析组织变化及界面元素的扩散,采用拉伸实验和杯突实验测定复合带材的力学性能。结果表明,铝/铝包覆率与压下量无关,铝/钢的包覆率随压下量的增加呈先降低后保持不变的规律。冷轧后退火可使铝/钢复合材料的硬度和强度降低、塑性增加、杯突值增加,综合性能得到改善。  相似文献   

8.
退火温度对轧制复合Cu/Mo/Cu电子封装材料性能的影响   总被引:4,自引:0,他引:4  
研究了不同退火温度对轧制复合Cu/Mo/Cu电子封装材料性能的影响。结果表明退火温度对复合材科日刁剪切强度、轧向导电能力和厚度方向导热能力有显著影响,退火温度为850℃时,Cu/Mo/Cu电子封装材料的综合性能最好。  相似文献   

9.
采用轧制方法制备Cu/Mo/Cu复合材料,利用金相显微镜、扫描电镜和电子拉伸机等研究Cu/Mo/Cu复合材料的界面结构、断裂特点和工艺参数对结合强度的影响。结果表明:轧制前经(750℃,8 min)热处理,道次变形量为55%,复合材料的界面结合紧密,最大剪切强度为77 MPa;钼层金属显微组织呈扁平纤维状,组织较为均匀,铜层金属的晶粒呈等轴状,由界面至表面晶粒逐渐增大,且分布很不均匀;复合机制为典型的裂口结合和机械啮合。  相似文献   

10.
利用Instron电子拉伸机和Split-Hopkinson压杆(SHPB)实验装置,研究了准静态和动态压缩条件下冷轧和退火Cu板法向、轧向、横向的力学性能.不同应变率下的应力-应变曲线表明:冷轧和退火Cu板的流变应力均随应变率的增加而增加,表现出明显的应变率强化效应.冷轧Cu板准静态和动态压缩力学性能均呈现明显的各向异性:横向屈服强度最大,轧向最小,且低应变程度下的流变应力也具有同样规律.退火Cu板呈现近似各向同性.考虑准静态和动态变形时可能的塑性变形机制,基于微观晶体塑性变形理论的Taylor模型可定性地解释冷轧Cu板压缩力学性能的各向异性.  相似文献   

11.
Cu/Mo/Cu爆炸复合界面组织特征   总被引:7,自引:0,他引:7  
用爆炸复合的方法,试制出了Cu/Mo/Cu板材。用光学显微镜和扫描电镜研究了其界面组织特征;并利用显微硬度考察了界面附近硬度及界面附近的形变特点。结果表明:Cu/Mo/Cu复合材具有波形结合面和平直结合面;波形界面存在熔区,其熔区的显微硬度高于Cu基体而低于Mo基体。  相似文献   

12.
研究了Cu/Sn-0.7Cu/Cu焊点在蠕变温度为100℃,剪切应力分别为3.62、2.53和1.78 MPa时的蠕变行为。结果表明,3种应力状态下,焊点都呈现出初始蠕变、稳态蠕变和加速蠕变3个典型阶段,并且随着蠕变应力的降低,蠕变寿命延长、稳态阶段的应变速率降低;当蠕变应力较大时,蠕变断裂受位错的滑移、攀移机制控制,而当蠕变应力较小时,蠕变断裂受晶界滑移机制控制;断裂位置位于焊点内部中心。在试验条件下,界面IMC对焊点的蠕变性能没有显著的影响。  相似文献   

13.
对大变形制备的Cu-Cr原位复合材料的相界面进行HRTEM分析.结果表明:在Cu/Cu界面观察到两种界面衬度,即完全共格和错配位错衬度;Cu/Cr界面观察到完全共格和波纹图衬度.且发现在应变量η=6.43时,Cu/Cr界面中的Cr侧通过晶内畸变位错调节与基体的应变差异,保持界面的共格状态.  相似文献   

14.
采用双辊快速凝固技术制备了Sn-58Bi钎料薄带,并制备Cu/Sn-58Bi/Cu线性焊点。使用电子探针(EPMA)及能谱分析(EDS)研究焊点在电流密度为1×10^4 A/cm^2(25℃)下界面金属间化合物(IMC)、元素扩散与钎料基体组织演变规律。结果表明,随着通电时间延长阳极界面处的IMC层的形状从扇贝状转变为锯齿状,阴极界面处的IMC层由扇贝形变为不规则,其厚度逐渐增加。阳极由于Bi的偏聚形成了富Bi层,Sn在阴极偏聚,基体共晶组织(Bi+β-Sn)粗化。基于线性拟合可知,阳极和阴极的界面IMC层的生长系数n分别为0.263和0.442,其生长机制可归结为体积扩散。  相似文献   

15.
16.
研究了铜基板退火处理对Cu/Sn58Bi界面微结构的影响.结果表明,在回流以及时效24 h后Cu/Sn58Bi/Cu界面只观察到Cu6Sn5.随着时效时间的增加,在界面形成了Cu6Sn5和Cu3Sn的双金属间化合物(IMC)层,并且IMC层厚度也随之增加.长时间时效过程中,在未退火处理的铜基板界面产生了较多铋偏析,而在退火处理的铜基板界面较少产生铋偏析.比较退火处理以及未退火处理的铜基板与钎料界面IMC层生长速率常数,发现铜基板退火处理能减缓IMC层生长,主要归因于对铜基板进行退火处理能够有效的消除铜基板的内应力与组织缺陷,从而减缓Cu原子的扩散,起到减缓IMC生长的作用.  相似文献   

17.
The studies of soldered joints were carried out in systems: Al/solder/Al, Al/solder/Cu, Cu/solder/Cu, where the solder was (Al-Zn)EUT, (Al-Zn)EUT with 0.5, 1.0, and 1.5 at.% of Ag and (Al-Zn)EUT with 0.5, 1.0, and 1.5 at.% of Cu addition. Brazing was performed at 500 °C for 3 min. The EDS analysis indicated that the composition of the layers starting from the Cu pad was CuZn, Cu5Zn8, and CuZn4, respectively. Wetting tests were performed at 500 °C for 3, 8, 15, and 30 min, respectively. Thickness of the layers and their kinetics of growth were measured based on the SEM micrographs. The formation of interlayers was not observed from the side of Al pads. On the contrary, dissolution of the Al substrate and migration of Al-rich particles into the bulk of the solder were observed.  相似文献   

18.
铜/铝/铜轧制复合板的退火工艺研究   总被引:5,自引:1,他引:5  
研究了低温长时间和高温短时两种退火工艺对铜/铝/铜轧制复合板的成型性能及界面结合强度的影响,讨论了退火强化现象没有出现的原因。结果表明,退火处理不能提高铜/铝/铜轧制复合板的结合强度,只能改善复合板的成型性能。铜/铝轧制复合板宜采用高温短时退火制度,退火温度选择580~625℃,时间控制在10min以内,此工艺得到的铜/铝轧制复合板综合性能最佳。  相似文献   

19.
王极 《金属热处理》2007,32(9):39-40
Cu/Fe/Cu复合板带材以其节省贵金属及降低成本,又具有铜导电、耐蚀、美观及高强度的特性,已经被广泛应用于防务、电子、机械、五金及装饰等行业.我公司生产的Cu/Fe/Cu复合板带层厚比约为1∶24∶1,其表层材料是H90黄铜,基层(内层)材料是优质低碳钢.带材规格为(0.2~3.0)mm×140 mm,板材规格为(0.5~3.0)mm×140 mm×(750~2000)mm.Cu/Fe/Cu复合带材是采用可控气氛热轧复合,后经冷轧、退火加工,再经横剪可制成板材.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号