首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了探究超声振动对渐进成形件的表面性能及表面形貌的影响,选取步距和超声振动作为实验变量,综合分析了超声振动对成形件表面形貌(波纹、凹坑和表面粗糙度)和表面性能(硬度和接触角)的影响。结果表明,超声振动使成形件的表面波纹高度降低,使凹坑深度发生变化。施加超声振动后,成形件的表面粗糙度明显下降,且随着步距的增加而减小,成形件表面出现规律性凹坑。与原始板材相比,渐进成形件的硬度大幅提升,但是施加超声振动的成形件的表面硬度小于传统成形件,且硬度随着步距的增加而增大。施加超声振动后,接触角可达112°,表现为疏水性。  相似文献   

2.
《锻压技术》2021,46(9):118-123
针对304不锈钢圆筒件的超声振动辅助拉深成形,分别采用工件超声振动和压头超声振动两种超声振动模式进行对比拉深试验研究,分析两种超声振动模式对拉深成形过程中最大拉深成形力、成形起皱和拉深破裂特性的影响规律。结果表明:工件超声振动和压头超声振动均可有效降低拉深成形过程中的最大成形力,并改善筒形件的起皱情况,且随着超声振幅的增大,改善效果更加明显。由于两种超声振动模式中对不锈钢板料施加超声振动的作用区域存在差异性,以及由于横向超声振动振幅的影响,使得工件超声振动更有利于降低最大成形力,而压头超声振动在改善板料起皱方面的效果更好。另外,随着超声振幅的增大,板料的超声硬化效应更加明显,压头超声振动更容易产生拉深破裂现象。  相似文献   

3.
在渐进成形加工中施加高频振动会引起被加工材料的塑性性能改变,并产生软化现象,从而降低加工过程中所需的成形力。首先,基于晶体塑性理论建立了描述金属塑性变形过程中应力-应变关系的理论模型,通过调整位错密度演化和热激活过程体现了超声施加后的声软化效应,构建了超声辅助成形加工时材料的本构模型。基于改进后的本构模型,通过ANSYS/LS-DYNA软件,对超声辅助渐进成形过程进行仿真模拟,获得了成形过程中成形力随成形深度的演变规律。通过超声辅助点成形实验,识别了本构模型参数并验证了仿真模拟结果,获得在一定频率下施加不同振幅时成形力的变化曲线。结果表明,在仿真时使用考虑软化效应的本构模型能获得更好的成形力预测效果。  相似文献   

4.
介绍了金属薄板振动渐进成形的工作原理,分析了成形工具的参数间的关系,得出了金属薄板变形区所需变形力的表达式。通过Matlab软件计算,对成形过程中金属薄板被施加振动载荷和不施加振动载荷的变形区所需变形力进行比较,在施加了振动频率10 Hz和振幅0.05mm的振动载荷情况下变形力可降低26.3%,从而可缩小成形工具的径向尺寸,提高成形零件的尺寸精度,降低加工能耗。  相似文献   

5.
为研究超声振动辅助成形的内在机理,设计一套25kHz高频超声振动装置,配合试验机进行1050铝合金静态及振动辅助条件下的压缩试验。实验发现,振动有利于降低材料的流动抗力,同时有助于改善试样表面形貌;成形力的降幅与所施加超声振动的振幅成比例关系。结合有限元数值模拟,研究材料在超声振动辅助压缩条件下的变形特点,发现在振动阶段,试样与模具接触面之间的摩擦条件得以改善。此外,应力叠加和摩擦条件改善是振动阶段成形力降低的两个原因,但两者的降幅总和小于实验中测得的降幅,因此软化效应是成形力降低的另一原因。  相似文献   

6.
研究并掌握施加超声振动后镁合金板材在各成形参数下的成形规律,对解决温渐进成形带来的材料受热不均、随着温度的改变润滑薄膜在局部高温下引起的粘着、模具强度和寿命随温度升高而降低等问题,完善镁合金超声振动单点渐进成形工艺有着重要的理论和实际应用价值。以方锥盒形件为研究对象,以最大剪切应力、减薄率和成形精度为指标,分析不同参数:工具头尺寸、板厚和振幅对镁合金板材超声振动单点渐进成形性能的影响。结果表明:施加超声振动后,最大剪切应力和最大减薄率均有明显的降低,成形精度有明显的提高且在工具头直径D=10 mm,板厚h=1.0~1.3 mm,振幅A/2=0.04 mm,成形性能改善最为明显。  相似文献   

7.
《塑性工程学报》2016,(6):14-18
塑性成形中施加超声振动可以软化金属、改善材料成形性能,在拉拔等塑性成形工艺中已有广泛的应用,但超声振动在微成形中的应用则需要首先研究其对介观尺度材料成形性能的影响规律。文章设计了不施加超声振动和施加超声振动条件下纯钛TA1微圆柱体的压缩试验,研究了其流动应力的变化特点。试验结果表明,施加超声振动后材料流动应力的降幅随着试样尺寸的减小和超声振幅的增加而增加;材料的硬化指数随着单位体积材料吸收超声能量的增加先增大后减小。  相似文献   

8.
《锻压技术》2021,46(9):132-137,144
采用超声振动辅助技术,利用万能材料试验机分别对45钢、6063铝合金和T2铜3种板材进行铆接实验。在不同条件下,对铆接过程中的压铆力、剪切强度、相对干涉量以及6063铝合金铆钉的材料流动进行分析,研究了超声振动对铆接工艺中铆钉的力学性能、变形行为以及铆接质量的影响。结果表明:施加超声振动时,随振幅增大,压铆载荷逐渐降低,不同板材的压铆力的降幅基本相等;剪切强度得到了提升,最大增幅为10.47%。在超声振动的表面效应和软化作用下,接触面之间的摩擦作用得到改善,难变形区面积减小了51.08%,钉杆的变形尺寸更加均匀。超声振动可降低铆接结构的相对干涉量系数,尺寸均匀度的改善有利于延长铆接结构的疲劳寿命。  相似文献   

9.
基于自制的超声振动时效成形装置对7075铝合金板材进行了超声振动时效成形,研究了超声振动作用对该铝合金板材时效成形性能的影响。结果表明:超声振动的作用能显著改善时效成形构件的成形效果,而对合金的拉伸性能影响不大;随着超声波施加时间的延长和施加功率的增加,试样回弹率降低,强度(屈服强度、抗拉强度)和伸长率略微增加,与未施加超声波时相差不大。经超声作用的试样晶粒特征无明显差别,但随着超声波施加时间的延长和超声波施加功率的增大,第二相粒子的数量和尺寸出现逐渐减小的现象,晶内位错密度减小,拉伸断口韧性断裂特征更显著。  相似文献   

10.
基于自制的超声振动时效成形装置对7075铝合金板材进行了超声振动时效成形,研究了超声振动作用对该铝合金板材时效成形性能的影响。结果表明:超声振动的作用能显著改善时效成形构件的成形效果,而对合金的拉伸性能影响不大;随着超声波施加时间的延长和施加功率的增加,试样回弹率降低,强度(屈服强度、抗拉强度)和伸长率略微增加,与未施加超声波时相差不大。经超声作用的试样晶粒特征无明显差别,但随着超声波施加时间的延长和超声波施加功率的增大,第二相粒子的数量和尺寸出现逐渐减小的现象,晶内位错密度减小,拉伸断口韧性断裂特征更显著。  相似文献   

11.
拉伸成形结束后,由于残余应力的存在导致蒙皮零件产生较大的回弹,会严重影响蒙皮的使用质量。基于回弹产生的原因,从工件的应力-应变机制阐述了振动减小残余应力的机理,提出了一种振动辅助飞机蒙皮拉伸成形的新工艺方法,给出了该工艺的主要参数——频率、振幅在应用选择上的依据条件及实际运用中可选择的合理范围。以飞机前缘蒙皮拉伸成形为例,通过数值仿真模拟,分析了施加振动对成形蒙皮零件回弹的影响以及频率、振幅对改善回弹的影响,并通过实验加以验证。结果表明,在飞机蒙皮拉伸成形过程中,施加振动可以更加有效地减小零件的回弹,当选取的工艺参数频率为30 Hz左右、振幅在1.5 mm左右时回弹值最小,效果最佳。  相似文献   

12.
为了在加工复杂薄壁件的过程中改善其工艺性能和使用性能,对6061铝合金复杂薄壁件双向振动超声渐进成形后的力学性能和微观结构进行了研究,对比了传统渐进成形、垂直单向超声振动渐进成形和椭圆双向超声振动渐进成形工艺,对成形后的试验件进行硬度测试、残余应力分析以及扫描电子显微镜观察,以验证双向渐进成形工艺对铝合金复杂薄壁件成形性能和使用性能的提升效果。硬度试验结果表明,椭圆超声振动渐进成形能够软化材料,增加材料塑性和韧性,从而提高6061铝合金成形复杂薄壁件的能力,试验件断裂面端口产生大量韧窝的现象也进一步证明了这一观点。试验件成形表面的微观形貌特征表明椭圆超声振动渐进成形在改善试验件表面质量方面具有显著优势。此外,发现椭圆超声振动渐进成形方法能够在6061铝合金表面形成残余压应力层,有利于提高薄壁件的抗疲劳性能。  相似文献   

13.
超声振动辅助铣削加工钛合金表面摩擦磨损性能研究   总被引:1,自引:0,他引:1  
马超  张建华  陶国灿 《表面技术》2017,46(8):115-119
目的研究超声振动辅助铣削加工钛合金表面形貌及摩擦磨损性能的优势。方法将0、6、12μm的超声振动振幅分别施加到铣削加工的进给方向加工TC4钛合金,得到不同加工参数条件下的表面形貌。用多功能扫描电子显微镜观察不同条件下的微观表面形貌,并且对不同表面的摩擦磨损性能进行了测试,分析了超声振动对表面摩擦磨损性能的影响。结果施加超声振动后,表面微观形貌与传统铣削加工存在较大区别。表面微观形貌不仅存在因进给速度产生的进给划痕,还存在一定规律的微观织构。摩擦磨损试验分析了干摩擦与润滑脂摩擦两种情况。干摩擦条件下,超声振动对摩擦系数的影响较明显,振幅为6μm时,摩擦系数有所减小;振幅为12μm时,摩擦系数有所增大。脂润滑条件下,摩擦系数变化较小。结论通过超声振动辅助铣削可以加工出具有一定微观形貌的表面织构,这些微织构的存在影响了加工表面的摩擦磨损性能,对于研究表面抗磨减阻性能有一定的作用。  相似文献   

14.
利用数控渐进成形机床对PC板料进行渐进成形实验,探究了成形工具头不同主轴转速和进给速度对PC板成形极限的影响。实验结果表明,当进给速度保持3000 mm·min~(-1)不变时,随着主轴转速的增大,板料渐进成形力不断减小,成形极限不断降低,零件表面质量也不断下降,并且当主轴转速达到1500 r·min~(-1)时,零件底部会出现表面褶皱缺陷;当主轴转速保持500 r·min~(-1)不变时,随着进给速度的增大,板料渐进成形力不断增大,成形极限不断降低,零件表面质量较好,底部未出现表面褶皱缺陷。  相似文献   

15.
为了分析工艺参数对金属板材单点渐进成形表面质量的影响,本文在数控铣床上进行了08Al钢方锥形盒单点渐进成形实验,检测了表面粗糙度,研究了工艺参数(成形角、横向进给速度、纵向进给速度和进给量)对渐进成形件表面质量的影响。结果表明:成形角为45°时,表面粗糙度最小;横向进给速度为150 mm/min时,表面粗糙度最大;表面粗糙度随纵向进给速度的增大而减小,随纵向进给量的增大而增大。  相似文献   

16.
采用电液式激振设备在固溶态7075铝板(7075-WT)摩擦实验和拉深成形过程中施加低频振动场,探究低频振动对7075-WT拉深成形中摩擦行为及拉深性能的影响。结果表明,低频振动场下减小振幅和增大振频均有助于改善犁沟效应,降低坯料和模具之间的摩擦力。低频振动辅助拉深成形中,振动场对材料的软化效应和减摩效应显著影响杯型件的厚度分布及拉深极限。其中,当振频为30 Hz时,与0.243 mm振幅相比,0.078 mm的小振幅使7075-WT杯型件厚度分布更加均匀,极限拉深深度提升153.46%。在0.125 mm振幅、20~30 Hz振频条件下,厚度均匀性和极限拉深深度随振频的提高而降低。  相似文献   

17.
利用DEFORM-3D有限元软件建立了其三维刚塑性有限元模型,通过仿真与实验相结合的方法,分析展宽角、成形角、断面收缩率对GH4169合金成形过程中力能参数的影响规律。结果表明在展宽段有:随着成形角的增大,径向力、横向力和轧制力矩均减小,轴向力略增大,但增大幅度不明显;随着展宽角的增大,径向力、横向力和轧制力矩均增大,轴向力减小;随着断面收缩率的增大,径向力、横向力和轧制力矩先增大后减小,轴向力增大。采用无量纲影响因子法,综合分析获得了工艺参数对力能参数影响的主次顺序。在此基础上,进行了1∶1楔横轧GH4169合金实验,得到轧制力矩与数值模拟结果相对误差在10%以内。研究结果为GH4169合金轴类件楔横轧成形合理选取工艺参数和轧机设计力能参数确定提供参考。  相似文献   

18.
基于超声振动辅助微挤压成形过程摩擦特性表征需求,将超声振动辅助双杯挤压实验拆分为超声振动辅助正杯挤压和反杯挤压两个部分。通过超声振动辅助T2紫铜正杯挤压和反杯挤压的对比成形实验研究了不同超声振动模式辅助微挤压成形过程中试样-模具型腔间的界面摩擦特性,并提出一种量化评价新方法来评估超声振动辅助微挤压成形试样-模具型腔间摩擦应力及摩擦因数的变化规律。结果表明,微挤压成形应力降低值和试样-模具型腔间的摩擦应力降低值都随着超声振幅的增大而增大,且随着工具超声振动、工具-工件复合超声振动和工件超声振动的不同超声振动模式顺序依次增大。  相似文献   

19.
《锻压技术》2021,46(4):69-75
针对现有的超声振动液压成形装置中振动主要施加在模具上、振动能量传递路径长、结构复杂等特点,开发了一种将振动直接作用于管材的微小管轴向超声辅助液压成形装置,可在普通压力机上进行超声和常规的轴压胀形。该装置选用标准模架作为轴向进给机构,结构简单、成本低,通过设计耦合了变幅杆功能和密封结构的一体化工具头,将超声振动顺利叠加在轴压胀形过程中,并以TP2无缝内螺纹铜管为试验材料进行了相关试验。结果表明:该装置拆装方便、操作简单,振动的加载降低了对成形过程中轴压载荷和液压力的要求,加强了材料的轴向流动。  相似文献   

20.
利用单点和双点渐进成形技术(SPIF/TPIF)制作了AA1100铝合金金字塔台形工件,通过阳极覆膜、背散射电子衍射技术和透射电镜观察渐进变形前后的微观组织。在台形件的两个成形平面上进行取样,进行室温拉伸实验和维氏硬度测试。实验结果表明:渐进成形后多晶体组织呈现(220)取向。渐进成形时板料表面层晶粒细化机理为位错分割细化,晶粒从原始尺寸11. 5μm细化到1. 5μm,细化后的晶粒多为细小亚晶,渐进成形后材料的屈服强度提高15 MPa以上,材料呈现明显的加工硬化,工具头接触面的硬度提高35%以上。通过比较板材轧制织构与工具头不同运行方向的平面,发现试样横向平面在轧制方向的伸长率明显高于轧向平面的伸长率。相比于单点渐进成形,双点渐进成形后的微观组织更加均匀,加工硬化效果更明显,两者拉伸强度接近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号