首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We report on in-situ high temperature X-ray thermal stress analysis of chemically graded Ti(C,N) coatings deposited on functionally graded cemented carbide substrates by chemical vapor deposition. The in-situ analyses were performed by energy dispersive X-ray diffraction using synchrotron radiation. The samples were subjected to one individual thermal cycle from room temperature to 800 °C and cooled down to room temperature again. The stresses were determined using the sin2ψ method in the Ψ geometry combined with scattering vector measurements in order to unravel the compositional influences on the lattice strain distributions. It was found that the Ti(C,N) thin film presents a cycling residual stress behavior (tensile–compressive–tensile) connected to the temperature cycle. If top-blasting is applied on the thin film layer after the coating process, compressive stresses are generated. These compressive stresses induced by top-blasting are partially released after the high temperature thermal cycle. The functionalization of the cemented carbide substrate influences the level of stresses developed in the coating. The stress behavior as a function of temperature is discussed with the support of finite element modeling by introducing a bi-linear plasticity model to calculate strain relationships which is in agreement with the synchrotron measurements.  相似文献   

2.
Coating of plastics by inorganic metal-based films requires profound knowledge about the phenomena occurring in connecting materials of very high and very low (visco-)elastic properties. Buckling and delamination are unwanted, stress-release induced effects leading to severe failure. To overcome the problem of delamination, higher energetic deposition conditions for strengthening the polymer surface by ion implantation are seen as a chance, but bear the risk of high film stresses and, thus, an increase of buckling.To understand these phenomena in pulsed laser deposition (PLD) the current work focuses on topographical, morphological and chemical investigations of polymers coated with thin interface films between 5 and 100 nm thickness. Applying this approach in the room temperature PLD (RT-PLD) enables the understanding of ion implantation during interface growth.The results reveal a strong chemical binding between implanted atoms and polymer chains as well as a hardening of the soft polymer surface, which increases the load capacity. Only very low changes of the surface topography after coating by wrinkling phenomena reveal scarce influence of the ion bombardment and high adhesion of the films.  相似文献   

3.
内压对薄壁铝合金管材充液压弯过程的影响   总被引:3,自引:1,他引:2  
采用实验和数值模拟研究5A02铝合金薄壁管材充液压弯成形过程中内压对缺陷的影响规律,分析内压对弯曲内侧起皱、截面畸变及壁厚分布的影响,获得壁厚变化规律;通过数值模拟给出的应力状态,揭示缺陷形成机制。结果表明:提高内压能降低轴向压应力的绝对值,减小失稳起皱趋势,当内压超过一个临界值时,皱纹完全消除。对于直径为63 mm、壁厚为1 mm的5A02-O铝合金管材,其内压临界值为2.8 MPa。充液有效地减小截面畸变程度,随内压的增大,截面畸变程度逐渐减小。弯曲后,壁厚最大减薄点位于弯曲外侧点,且随内压的增大,轴向和环向拉应力均呈增大趋势,弯曲外侧壁厚度减薄的趋势也增大。  相似文献   

4.
轴类件热喷涂涂层残余应力的有限元分析   总被引:1,自引:0,他引:1       下载免费PDF全文
热喷涂涂层内部的残余应力分布是影响喷涂成形质量和使用性能的重要因素之一.文中基于热喷涂过程的逐层叠加成形的基本假设,利用有限单元法建立了轴类金属基体表面沉积铝涂层的温度场和应力场二维数值模型,研究结果揭示了喷涂涂层温度的波动上升和大量粒子独立快速凝固的典型规律,通过分析残余应力分布行为,发现涂层内部的周向和轴向应力分量最大,皆为拉应力;径向应力分量值远小于周向和轴向应力,应力方向不固定.当涂层不断增厚时,每一薄层的应力受后续沉积薄层的作用发生部分抵消,且残余应力分量值都随着涂层厚度的增加而增大.  相似文献   

5.
双层管内压弯曲方法为获得大直径超薄弯管提供了可行的途径,文章对该方法避免内层管起皱的机理进行研究。内压在双层管轴向产生的附加拉应力,可降低弯曲内侧轴向压应力,有助于预防起皱。采用弹性理论,得到双层直管状态下附加轴向拉应力表达式,并对理论模型进行验证。通过数值模拟,分析了弯曲过程中支撑内压、外层管厚度,对内层超薄管起皱和轴向应力的影响规律。理论分析结果表明,双层管极限支撑内压,会随外层壁厚的增加而显著提高,因此对于厚度比较大的双层管,可以通过采用较大的支撑内压,提高附加轴向拉应力的方法避免起皱。模拟结果表明,随着外层管厚度增加,外层管弯曲时不易发生失稳起皱,同时弯管内侧轴向压应力绝对值降低。支撑内压越高,内外层界面贴合越紧密,内层管在承受轴向压应力时,其稳定性越高。  相似文献   

6.
Electrochemical synthesis of very thin polyphenol (PPhe) film was achieved on polypyrrole coated mild steel electrode (MS/PPy) and a multilayer coating was obtained, cyclic voltammetry technique was used for the synthesis. The corrosion performance of this multilayer coating and single PPy coating were investigated in 0.05 M H2SO4 solution by using electrochemical impedance spectroscopy (EIS), anodic polarization curves and open circuit potential (Eocp)-time curves were used. It was found that the multilayer coating could provide much better protection than the single PPy coating for corrosion of MS for much longer periods and an efficiency of 98.3% was determined for this coating after 340 h exposure time in corrosive medium. It is proposed that the very thin PPhe film coated on top of PPy coating lowered the porosity and improved the barrier effect of the coating significantly.  相似文献   

7.
《Acta Materialia》1999,47(7):2177-2184
The effect of thin film stress on the elastic strain energy of a coherent Cr thin film on a substrate has been calculated by applying Eshelby's inclusion theory taking into account both the anisotropy and inhomogenity. The elastic strain energy is more significantly influenced by the magnitude of the coherent misfit than by the film orientation, which explains why the (200) Cr texture can develop on the (200) MgO seed layer. The application of compressive stress to a film showing a positive dilatational misfit with a constant magnitude raises the elastic strain energy at all film orientations and causes the (200) Cr orientation to have the smallest elastic strain energy at a sufficiently large compressive stress. This suggests the possibility that a coherent Cr thin film on a substrate can exhibit a (200) texture due to the development of high thin film stress during the early period of sputter deposition. The elastic strain energy of an incoherent Cr thin film on a substrate is mostly determined by that due to the thin film stress itself and is always the smallest at the (200) Cr orientation, unlikely from the coherent thin film. Although this energy is normally negligibly small compared with the elastic strain energy due to a coherent misfit, it can nevertheless attain a critical energy range for a texture change from the (110) to (200) Cr at thin film stresses more than several hundred MPa. This explains why the (200) Cr texture is promoted over the (110) on amorphous NiP coating on applying either a mechanical texturing or a bias of negative voltage during sputter deposition. All of these analyses strongly suggest that the thin film stress developed in a thin film during the early period of sputter deposition plays an important role in determining its texture.  相似文献   

8.
承受非均匀拉伸矩形薄钢板的横向皱曲现象,既存在于汽车零件冲压成形制造中,也常见于薄带钢生产制造(尤其连续退火和热镀锌)中,是一个未完全解决的力学问题。文章认为矩形板宽度方向局部区域张力集中诱导生成的压应力是这一力学现象发生的主因,通过利用伽辽金变分与泛函分析原理给出了一种收敛性好、速度快的求解矩形方板弹塑性状态下应力场与屈曲临界应力的一种迭代算法,讨论了板的几何尺寸、拉伸非均匀度、材料性能对弹塑性状态前屈曲应力场的影响,根据临界载荷最小原则对皱曲区域进行了合理优化,同时结合有限元仿真和常温态非均匀拉伸实验,验证了解析计算模型的合理性。  相似文献   

9.
10.
Designing battery packs for safety in automotive applications requires multiscale modeling, as macroscopic deformations due to impact cause the mechanical failure of individual cells on a sub-millimeter level. The separator material plays a critical role in this process, as the thinning or perforating of the separator can lead to thermal runaway and catastrophic failure of an entire battery pack. The electrochemical properties of various polymer separators have been extensively investigated; however, the dependency of mechanical properties of these thin films on various factors, such as high temperature and strain rate, has not been sufficiently characterized. In this study, the macroscopic mechanical properties of a multilayer polymer thin film used as a battery separator are studied experimentally at various temperatures, strain rates, and solvent saturations. Due to the anisotropy of the material, material testing was conducted in two perpendicular directions (machine and transverse directions). Material samples were tested in both dry and saturated conditions at several temperatures, and it was found that temperature and strain rate have a nearly linear effect on the stress experienced by the material. Additionally, saturating the separator material in a common lithium-ion solvent had softened it and had a positive effect on its toughness. The experimental results obtained in this study can be used to develop mathematical constitutive models of the multilayer separator material for subsequent numerical simulations and design.  相似文献   

11.
TiO2 particle–polymer composite coatings were applied to the surface of a 5083 aluminum alloy. After using a knife to create an artificial defect, polarization resistance was monitored in artificial seawater at a temperature of 30 °C. The polarization resistance of the specimen coated with the composite polymer containing 3 vol% TiO2 particles increased significantly over time, suggesting that the composite coating had self‐healing properties. A carbon‐containing 2‐µm thick film was found on the coated aluminum substrate at the site of the artificial defect. The formation of the film was related to the dissolution of bisphenol A (BPA), which is a chemical precursor of the polymer coating that behaved as an inhibiting agent.  相似文献   

12.
The anodic oxidation and cathodic reduction processes of the Cu/Cu2O multilayer film and pure Cu film in pH 8.4 borate buffer solution were analyzed by electrochemical quartz crystal microbalance (EQCM) for gravimetry and bending beam method (BBM) for stress measurement. The mass loss of the multilayer film during anodic oxidation at 0.8 V (SHE) in the passive region was less than that of the pure Cu film. The comparison between current transients and mass changes during anodic oxidation has succeeded in separating the anodic current density into two partial current densities of oxide film growth, iO2-, and of Cu2+ dissolution through the passive film, iCu2+. As a result, in the case of the pure Cu film, the anodic current density was mainly due to iCu2+, while in the case of the multilayer film, iCu2+ was almost equal to iO2-. The compressive stress for the multilayer film was generated during anodic oxidation, while the tensile stress for the pure Cu film was generated.The mass loss of the multilayer film during cathodic reduction at a constant current density (ic = −20 μA cm−2) was significantly less than that estimated from coulometry, suggesting that H2O produced by cathodic reduction remained in the multilayer film. The compressive stress was generated during cathodic reduction of the multilayer film, which was ascribed to H2O remained in the multilayer film.  相似文献   

13.
Fragmentation and buckling of Ta layers with thicknesses of 50, 100, and 200 nm on polyimide substrates was studied by in situ light microscopy and synchrotron analysis. Buckling indicates the presence of compressive stress, which cannot be explained exclusively by a Poisson ratio mismatch. We extended the classical shear lag model and derived a rigorous analytical solution for the biaxial stress field in a single fragment attached to a uniaxially loaded substrate. The presence of cracks not only gives rise to tensile stress relaxation, but also induces compressive stress in the perpendicular direction, which eventually leads to film buckling. The validity of the model has been confirmed using a synchrotron-based technique for the in situ determination of the biaxial coating stress during uniaxial tensile testing. Taking into account the mean crack distance as a function of the applied strain, the model is utilized to determine the residual stress and fracture toughness of thin films.  相似文献   

14.
压应力对Sm-Fe-B磁致伸缩性能的改善有重要影响,但是其大小对磁致伸缩特性变化趋势的研究很少,而且还未见到压应力对磁各向异性影响的报道。本文利用特制夹具,使玻璃衬底在镀膜过程中受到不同应力作用,镀膜结束后,当玻璃衬底从夹具取下后,利用其恢复到原来状态,可以对稀土Sm-Fe-B薄膜产生压应力作用。通过调整夹具使衬底具有不同的预应力,可得到受到玻璃衬底不同压应力大小作用的薄膜样品。利用LK-G150激光微位移传感器与交变梯度磁强计(AGM)分别测试薄膜悬臂梁自由端偏转量与磁滞回线,以研究具有不同压应力对薄膜的磁致伸缩性能的影响,并且利用磁力显微镜(MFM)测试了薄膜样品垂直表面的磁畴分布情况。实验结果表明:受到压应力作用的薄膜易磁化轴都位于膜面内,以面内各向异性为主,磁畴结构基本分布在面内。随着压应力的增加,易磁化轴由膜面内的短轴转向膜面内的长轴,这一转变有利于器件的设计,但是磁畴在垂直膜面方向略有提高,薄膜的低场磁致伸缩性能也随着压应力的增大而有显著提高。  相似文献   

15.
Gong  Xiao-Yan  Clarke  D. R. 《Oxidation of Metals》1998,50(5-6):355-376
Highly stressed coatings, such as those formedby oxidation can, on occasion, wrinkle. Such wrinklinghas been suggested as a mode of deformation by which theoverall strain energy in a compressively stressed coating can be reduced. One of the consequencesof wrinkling is that the strain in the coating does notremain independent of position, but rather varies overthe wavelength of the wrinkling. The strain variation caused by sinusoidal wrinkling iscalculated using finite-element methods and the effectson both photostimulated Cr3+ luminescencepiezospectroscopy measurements and X-ray measurementscalculated. Wrinkling is shown to decrease theelastic-strain-energy density in the coating. A directmeasure of the decrease is the shift in the R2Cr3+ luminescence line and the X-raydiffraction peaks. Wrinkling of a compressive coating also causes stressesto be created perpendicular to the coating-substrateinterface, tensile at the crests in the wrinkles, andcompressive stress at the troughs.  相似文献   

16.
The relationship between microstructure and mechanical properties has been investigated in Al-Cu thin films. The Cu content in Al-Cu samples used in this study ranges from 0 to 2 wt.% and substrate curvature measurement was used to measure film stress. In thin films, the constraints on the film by the substrate influence the microstructure and mechanical properties. Al-Cu thin films cooled from high temperatures have a large density of dislocations due to the plastic deformation caused by the thermal mismatch between the film and substrate. The high density of dislocations in the thin film enables precipitates to form inside the grain even during a very rapid quenching. The presence of a large density of dislocations and precipitates will in turn cause precipitation hardening of the Al-Cu films. The precipitation hardening is dominant at lower temperatures, and solid solution hardening is observed at higher temperatures in the tensile regime. Pure Al films showed the same values of tensile and compressive yield stresses at a given temperature during stress-temperature cycling.  相似文献   

17.
In this study, the abrasion resistance of a reflective thin film multilayer system consisting of Chromium Nitride (CrNx) layers deposited on specially prepared coated polymeric substrates is presented. The abrasion resistance is quantified by the Bayer abrasion test, and then correlated with the physical properties of the film. Their resistance to abrasion is identified as being defined partially by the microstructure of the layers within the multilayer system. Relative measures of the abrasion resistance are made by quantifying the surface roughness in the specific case where the substrate is the same (hardness and elastic moduli) and the elemental and phase composition of the coating is the same. Importantly, the optical measurement of the diffuse reflectance is used to assess the relative structure of the coatings prior to the abrasion test. By doing so, a useful, non-destructive technique is presented for characterising the relative abrasion resistance of sputtered thin film coatings.  相似文献   

18.
Stress in thin film multichip-module interconnect layers is often a consequence of the mismatch in the coefficients of thermal expansion among the substrate, polymer dielectric, and metal used as interconnect lines and power/ground planes. This article considers the origin of both biaxial in-plane stress and the more complex multiaxial stress state at the edge of the film for several representative multichip-module materials systems. Single-layer films are considered in detail, and then the implications for multilayer films are discussed. Adhesion of the film is a concern since delamination is a failure mode. The role of residual stress in reducing the energy to cause decohesion is considered for various polyimide systems.  相似文献   

19.
Technological challenges in future surface engineering applications demand continuously new material solutions offering superior properties and performance. Concepts for the design of such advanced multifunctional materials can be systematically evolved and verified by means of physical vapour deposition. The classical multilayer coating concept today is well established and widely used for the design of protective thin films for wear and tribological applications. It has proven great potential for the development of novel thin film materials with tailored properties. In the past decade, the emerging new class of nanoscale coatings has offered to the material scientists an even more powerful toolbox for the engineering thin film design through a combination of the multilayer concept with new nano-coatings. Some examples are the use and integration of low friction carbon-based nanocomposites in advanced multilayer structures or the stabilization of a specific coating in another structure in a nanolaminated multilayer composite. This paper reviews the latest developments in hard, wear-resistant thin films based on the multilayer coating concept. It describes the integration of nanocrystalline, amorphous and nanocrystalline/amorphous composite materials in multilayers and covers various phenomena such as the superlattice effect, stabilization of materials in another, foreign structure, and effects related to coherent and epitaxial growth. Innovative concepts for future, smart multilayer designs based on an extremely fine structural ordering at the nanoscale are presented as well.  相似文献   

20.
Residual stress in high velocity oxy-fuel (HVOF) thermally sprayed WC-10Co-4Cr coating was studied based on design of experiment (DOE) with five factors of oxygen flow, fuel gas hydrogen flow, powder feed rate, stand-off distance, and surface speed of substrate. In each DOE run, the velocity and temperature of in-flight particle in flame, and substrate temperature were measured. Almen-type N strips were coated, and their deflections after coating were used for evaluation of residual stress level in the coating. The residual stress in the coating obtained in all DOE runs is compressive. In the present case of HVOF thermally sprayed coating, the residual stress is determined by three types of stress: peening, quenching, and cooling stress generated during spraying or post spraying. The contribution of each type stress to the final compressive residual stress in the coating depends on material properties of coating and substrate, velocity and temperature of in-flight particle, and substrate temperature. It is found that stand-off distance is the most important factor to affect the final residual stress in the coating, following by two-factor interaction of oxygen flow and hydrogen flow. At low level of stand-off distance, higher velocity of in-flight particle in flame and higher substrate temperature post spraying generate more peening stress and cooling stress, resulting in higher compressive residual stress in the coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号