首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocrystalline zinc coatings were deposited from acid zincate bath containing newly synthesized condensation product. The effect of bath constituents, pH, temperature and current density on the deposit nature were investigated through Hull cell experiments. Current efficiency, throwing power, cathodic polarization and corrosion behavior in 3.5 wt.% NaCl were studied under optimum concentration of additives. Salt spray test and electrochemical measurements showed that nanocrystalline zinc coatings have better corrosion resistance than the zinc coatings deposited from a simple acid zincate bath without additive. The surface morphology and thickness (cross section) of the zinc deposits were studied by scanning electron microscopy (SEM). The preferred orientation and average grain size of the zinc electrodeposit were obtained by X-ray diffraction analysis. The particle size was also characterized by TEM analysis. Energy X-ray diffraction (EDX) and FT-IR spectral analysis were carried out to determine the inclusion of addition agent in the deposit. The experimental results indicated that the addition of condensation product of thiamine hydrochloride (THC) and furfural (FFL) leads to a more uniform nanocrystalline deposition with the grain sizes varying from 20-22 nm.  相似文献   

2.
Zn-Ni, Zn-Co and Zn-Ni-Co coatings were electrodeposited on mild steel from an acidic chloride bath containing p-aminobenzenesulphonic acid (SA) and gelatin. These additives changed the phase content in the coatings, most likely as a result of their adsorption at the surface of the cathode. The effect of gelatin was more pronounced than that of SA. The Faradaic efficiency was higher than 90%. As the current density was increased or the bath temperature was decreased, the concentration of the nobler metal in the coating increased. Both concentrations of Ni and Co in the ternary alloy increased as the applied current density was increased. Nickel and cobalt were found to have a synergistic catalytic effect. The thickness of all coatings increased as the applied current density was increased. The hardness increased with current density to a peak value, and then decreased. The rate of Zn deposition was heavily influenced by mass-transport limitation at high applied current densities, while the rates of Ni and Co deposition were not. The anomalous codeposition was explained by the great difference between the exchange current densities of Zn and the iron-group metal. Potentiodynamic polarization scans and electrochemical impedance spectroscopy showed that the corrosion resistance of the ternary Zn-Ni-Co alloy coatings was approximately 10 times higher than that of Zn-Ni and 7 times higher than that of Zn-Co. The improved corrosion resistance of the ternary alloy was attributed to its surface chemistry, phase content, texture, and surface morphology. The ternary Zn-Ni-Co coating may thus replace the conventional Zn-Ni and Zn-Co coatings in a variety of applications.  相似文献   

3.
《金属精饰学会汇刊》2013,91(6):317-323
Abstract

Compositionally modulated alloy (CMA) coatings of Zn–Co were electrodeposited on to mild steel from an acid chloride bath containing thiamine hydrochloride, as an additive. Electroplating was carried out galvanostatically from a single bath containing Zn2+ and Co2+ ions. Gradual change in composition in each layer was effected by triangular current pulses, cycling between two cathode current densities. Compositionally modulated alloy coatings were developed under different conditions of cyclic cathode current density and number of layers, and their corrosion resistances were evaluated by potentiodynamic polarisation and electrochemical impedance spectroscopy. The formation of multilayer and corrosion mechanism was analysed using scanning electron microscopy. The corrosion resistances of CMA and monolithic alloy coatings were compared with that of the base metal. Compositionally modulated alloy coating at optimal configuration, represented as (Zn–Co)2·0/4·0/300, was found to exhibit ~80 times better corrosion resistance compared with monolithic (Zn–Co)3·0 alloy, deposited for the same length of time from the same bath. Improved corrosion resistance was attributed to the formation of n-type semiconductor film at the interface, supported by Mott–Schottky plots. Decrease in corrosion resistance at high degree of layering was found, and is due to lower relaxation time for redistribution of solutes in the diffusion double layer, during plating.  相似文献   

4.
Zn-carbon nanotubes composite coatings were obtained from a sulphate bath containing dispersed carbon nanotubes (CNTs). The electrochemical and weight loss measurements were made to find the corrosion behavior of composite coating. The presence of carbon nanotubes shifts the potential of zinc deposit to more positive values. The composite coatings were porous free and the service life of coating was examined by salt spray test. The electrochemical studies revealed higher resistance of composite coatings to corrosion. The surface morphology was investigated by recording the SEM images of coating before and after corrosion. The mechanism of action against corrosion was established.  相似文献   

5.
利用含新型三元复合络合剂的酸性化学镀镍液体系,在AZ91D镁合金表面通过化学镀制备Ni-P防护镀层。结果表明,镀层沉积速率随着镀液中三元复合络合剂浓度的变化而改变。利用X射线衍射(XRD)、扫描电子显微镜(SEM)和差热分析(DSC)对镀层结构、形貌以及热稳定性进行表征和分析。通过交流阻抗(EIS)和动电位扫描极化曲线对Ni-P镀层在3.5%NaCl溶液中的耐蚀性能进行评价。镀液中三元复合络合剂的浓度对Ni-P镀层的结构与形貌有显著影响。Ni-P镀层的热稳定性随着三元复合络合剂浓度的增加而降低。当镀液中三元复合络合剂浓度为0.035 mol/L时,所制备的Ni-P镀层致密、均一,在3.5%NaCl溶液中表现出良好的耐蚀性能。  相似文献   

6.
THE STUDY on zinc-nickel alloy coatings isdeveloped rapidly because of their higher corrosionresistance and better mechanical characteristics[1-8].The zinc-nickel coatings provide improved corrosionprotection for steels in relatively aggressiveenvironments.It has been found that the maximumprotective ability can be reached with the nickel contentbetween12%and15%[9].Recently,several newzinc-nickel alloy technologies have been developed[10-15]and further researches for better coating andchara…  相似文献   

7.
The effect of textures on different surfaces of an as-extruded Mg-4 Al-1 Sn-1 Zn(ATZ411) alloy sheet on its corrosion behavior was systematically investigated. The microstructure was examined by optical/scanning electron microscopy. The texture was characterized by X-ray diffraction and electron backscatter diffraction. The corrosion performance was evaluated by immersion tests, electrochemical measurements, and corrosion morphology observation. The results showed that there were obvious differences in the corrosion morphology and corrosion resistance on different surfaces. The surface perpendicular to extrusion direction had better corrosion resistance and more uniform corrosion damage than that perpendicular to the normal direction and that perpendicular to the transverse direction in 3.5 wt% NaCl solution. The corrosion morphology was mainly determined by the distribution of the second phase and fine-grained regions. The corrosion rate was more related to the overall texture.  相似文献   

8.
This paper deals with the electrodeposition of Ni-Cu-Mo ternary alloy coatings on low-carbon steel substrate from an aqueous citrate sulfate bath. The structures and microstructure of coatings were characterized by scanning electron microscopy and x-ray diffractometry. The corrosion resistance of coatings was investigated by potentiodynamic polarization (Tafel) and electrochemical impedance spectroscopy techniques. The results show that the Ni-Cu-Mo coatings are mainly composed of fcc-Ni phase and a small amount of NiCu phase. Ni-Cu-Mo coatings exhibit a nodular surface morphology, and the roughness of electroplated coating increases with the increasing of Na2MoO4·2H2O in the bath. The corrosion performance of the coatings is significantly affected by the Mo content of the alloy coating and their surface morphology. The coating prepared in bath containing 40 g/L Na2MoO4·2H2O has the highest corrosion resistance in 3.5 wt.% NaCl solution, while that prepared in bath containing 60 g/L (or more) Na2MoO4·2H2O shows a lower corrosion resistance due to the presence of microcracks on the coating surface.  相似文献   

9.
Current machinery requires metallic materials to have better surface properties. Based on an orthogonal experimental design and analysis method, the CeO_2-reinforced nickel nano-composite coatings were prepared by direct current electrodeposition in a nickel sulfate bath containing CeO_2 nanoparticles. Statistical results indicate that current density is the most significant variable in the electrodeposition processing, while temperature is the least important factor. The microstructure of Ni and Ni-CeO_2 nano-composite coatings was characterized by scanning electron microscopy(SEM) equipped with energy-dispersive spectroscopy(EDS), and X-ray diffraction(XRD).The microhardness of the Ni coating is enhanced by the incorporation of CeO_2 nanoparticles. Potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) were used to characterize the corrosion behavior of Ni and Ni-CeO_2 coatings. These studies show that NiCeO_2 coating has better corrosion resistance compared to Ni coating.  相似文献   

10.
《金属精饰学会汇刊》2013,91(3):157-163
Abstract

Multiple-layer coatings of Zn–Fe alloy having alternatively the same compositions have been developed galvanostatically on mild steel (MS) from a single plating bath using triangular current pulses. Thiamine hydrochloride (THC) and citric acid (CA) were used as additives. Multiple-layer coatings were developed under different conditions of cyclic cathode current density (CCCD) and number of layers. Cyclic voltammetry demonstrated that the addition of THC and CA improves the deposit character by increasing the Ni content (through suppressing the deposition of Zn) via preferential adsorption on the cathode surface. The corrosion behaviours of the coatings were evaluated by electrochemical AC and DC methods. The optimum multiple-layer coating, represented as (Zn–Fe)3.0/5.0/300, was found to exhibit about four to five times better corrosion resistance when compared with monolayer (Zn–Fe)3.0 alloy, developed from the same bath for the same duration. Distinct phase structures responsible for interface formation between successive layers (which changes alternatively) were confirmed by X-ray diffraction analysis. Better corrosion resistance afforded by multiple-layer coating was attributed to the increased specific surface area of the coating because of layering. A synergistic effect of both structural difference between layers and individual layer thickness is responsible for enhanced corrosion resistance of the multiple-layer coatings. The formation of multiple layers and corrosion mechanism were analysed by scanning electron microscopy.  相似文献   

11.
Pure Zn and Zn matrix composite coatings containing nano-sized SiC particles with an average size of 50 nm were prepared from the zinc sulphate bath. The effect of the particle concentration and current density on the amount of particles embedded was examined. Electron microscopic studies revealed that the coating morphology was modified by the presence of SiC nanoparticles. Corrosion resistance properties of the coatings were studied using a potentiodynamic polarisation technique in 1M NaCl solution. It was established that agglomeration of nanoparticles worsens corrosion resistance properties of Zn–SiC coatings. However, the presence of well dispersed nanoparticles significantly improves the corrosion resistance of the zinc. Incorporation of SiC nanoparticles also improves the microhardness of the zinc matrix.  相似文献   

12.
Ni–Co nanocystalline coatings were electrodeposited from a modified Watts bath. Increasing the deposition current density had no significant effect on structure, corrosion and tribocorrosion behavior of the coatings. Adding saccharin into the bath reduced the grain size, increased the hardness, changed the texture component from (2 0 0) to (1 1 1), smoothed the surface morphology, increased the corrosion resistance and improved the tribocorrosion behavior of coating. Presence of sodium lauryl sulfate in the bath increased the corrosion resistance of coating by producing a more compact surface morphology. However, the coating showed low tribocorrosion resistance, probably due to its lower hardness.  相似文献   

13.
Ni/Zn compositionally modulated multilayer (CMM) coatings were deposited using dual bath technique. Coatings corrosion performance was evaluated using electrochemical impedance spectroscopy (EIS) during extended immersion times up to 48 h. The results of electrochemical impedance spectroscopy showed that Ni/Zn CMM coatings had better corrosion resistance compared to that of the zinc single layer coating. The modified corrosion product which is formed on the Ni/Zn CMM coatings during extended exposure times and also a good barrier effect of the nickel layer against aggressive species in these coatings can be two important reasons for high corrosion performance and so protection performance of the Ni/Zn CMM coatings.  相似文献   

14.
Composite coatings containing aluminum oxide and polyethylene are deposited using microplasma electrochemical anodic treatment of the iron surface in an aluminate bath at a voltage of 260–360 V. Using scanning electron microscopy, microprobe analysis, Fourier transform infrared spectroscopy, and electrochemical polarization measurements, the composition, structure, and corrosion characteristics of the coatings are determined. Adding 0.5–1.0 wt % polyethylene dispersion to the electrolyte is shown to substantially facilitate the origination of microplasma conditions, prevent the strong warming of electrolyte during anodizing, and obtain coatings with substantially higher corrosion resistance compared to those produced in an aluminate bath containing no polymer dispersion.  相似文献   

15.
In this research, Ni–W/SiC composite coatings were electrodeposited from a plating bath containing suspension of SiC particles. The influences of SiC particle concentration in the plating bath on the composition of composite coatings were investigated. The surface morphology and composition of the composite coatings were characterised by scanning electron microscopy, energy dispersive X-ray measurements and X-ray diffraction analysis. The corrosion characteristics of Ni–W/SiC composite coatings were investigated by mass loss and electrochemical measurements, including open circuit potential, electrochemical impedance spectroscopy and potentiodynamic polarisation in a 3·5 wt-%NaCl solution. The results showed that the addition of SiC particle to the deposition bath of Ni–W significantly increased the corrosion resistance. The significant improvement in corrosion resistance observed for Ni–W/SiC composite coatings (17100 Ω cm2) compared to Ni–W (5619 Ω cm2) could have resulted from the microstructural differences.  相似文献   

16.
Nickel–tungsten multi-walled carbon nanotubes (Ni–W/MWCNTs) nanocomposite coatings were co-electrodeposited in the ammonium-free bath by means of constant direct current coulometry. The results indicate that the amount of MWCNTs incorporated into the nanocomposite coatings has a key role in the improvement of their microhardness and corrosion resistance. The corrosion behavior of the coatings was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy methods in three corrosive media of 3.5 wt% NaCl, 1.0 M NaOH, and 0.5 M H2SO4. The experimental data of the corrosion current density (jcorr), corrosion rate (CR), the polarization resistance (Rp), and microhardness indicate that the presence of MWCNTs in coatings improves the quality of those coatings. The surface morphology of the coatings and the elemental analysis data were obtained by scanning electron microscopy and energy dispersive X-ray microanalysis respectively. As the results showed, the coatings were uniform and crack-free in the presence of 5.3 wt% carbon. Also, a microhardness test revealed that the nanocomposite coating containing 5.3 wt% carbon obtained in an ammonium-free bath which provided the higher content of tungsten had the highest hardness value among others.  相似文献   

17.
Zn coatings alloyed with magnesium offer superior corrosion resistance compared to pure Zn or other Zn-based alloy coatings. In this study, Zn/Mg/Zn multilayer coatings with various Mg layer thicknesses were synthesized using an unbalanced magnetron sputtering process and were annealed to form Zn-Mg intermetallic phases. The effects of the annealing heat treatment on the corrosion resistance of the Zn/Mg/Zn multilayer coatings were evaluated using electrochemical measurements. The extensive diffusion of magnesium species into the upper and lower zinc layer from the magnesium layer in the middle of the coating was observed after the heat treatment. This phenomenon caused (a) the porous microstructure to transition into a dense structure and (b) the formation of a MgZn2 intermetallic phase. The results of the electrochemical measurements demonstrated that the heat treated Zn/Mg/Zn multilayer coatings possessed higher levels of corrosion resistance than the non-heat treated coatings. A Zn/Mg/Zn multilayer coating with MgZn2 and (Zn) phases showed the best corrosion resistance among the heat treated coatings, which could be attributed to the reduced galvanic corrosion effects due to a small potential gradient between the MgZn2 and zinc.  相似文献   

18.
NdFeB磁体表面化学镀Ni-P合金防腐研究   总被引:1,自引:0,他引:1  
采用正交试验法对NdFeB磁体表面化学镀镍磷合金的工艺进行了优化,测量了镀层和基体在3.5%(ω)NaCl溶液、10%(φ)盐酸和20%(ω)NaOH溶液中的腐蚀速度,以及在3.5%NaCl溶液中的极化曲线和电化学阻抗谱,对比分析了在酸性和碱性条件下所得Ni-P镀层的结构和表面形貌。结果表明,采用EIS谱图及等效电路模型可对镀层和磁体在介质中的电化学参数进行拟合分析,化学镀Ni-P合金能够显著改善NdFeB磁体的耐腐蚀性能,且酸性条件下所获得的镀层为非晶态结构,表面胞状组织呈密集连续分布,耐腐蚀性能更佳。  相似文献   

19.
Ni-TiO2基纳米复合电刷镀层微观结构及腐蚀电化学行为   总被引:2,自引:2,他引:0  
研究了用电刷镀在Q235钢上制备出Ni-TiO2纳米复合镀层复合镀液中,纳米颗粒的加入量及不同的表面活性剂对镀层性能的影响。采用SEM对复合镀层的表面形貌进行分析,用极化曲线研究了纳米复合镀层在NaCl溶液中的腐蚀电化学行为,结果表明:与纯Ni镀层相比,Ni-TiO2纳米复合镀层晶粒更加细小,空隙率更低,阳离子表面活性剂分散镀液所得镀层效果最为显著;复合镀液中纳米TiO2质量浓度为10g/L时,复合镀层的耐腐蚀性能最优;纳米颗粒含量相等的情况下,阳离子表面活性剂分散镀液所得镀层具有最好的耐腐蚀性能。  相似文献   

20.
将纳米SiO2粒子通过超声分散引入到化学镀Ni-P合金镀液中,在碳钢基体表面共沉积得到纳米SiO2粒子/镍基复合镀层。通过X射线衍射(XRD)、扫描电镜(SEM)对Ni-P镀层和纳米SiO2粒子/镍基镀层的微观结构形貌进行了分析;采用失重法和电化学方法研究了纳米SiO2粒子/镍基复合镀层在3.5%NaCl溶液中的腐蚀行为。结果表明,纳米SiO2粒子/镍基复合镀层仍是非晶态,纳米SiO2粒子的加入提高了镀层的致密性,提高了镀层的耐腐蚀性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号