首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
采用Gleeble 3500D热模拟试验机对TC17钛合金进行了高温压缩试验(变形温度700~950℃,应变速率0.001~10 s~(-1),真应变0.9)。结果表明:TC17钛合金的高温流变应力对应变速率和变形温度非常敏感。在高温高应变速率条件下,TC17钛合金的流变应力出现了明显的应力不连续屈服现象。建立了TC17钛合金的修正J-C本构方程,并引入相关系数R和平均相对误差AARE对方程的准确性进行了分析,与试验结果对比表明:该方程可以较准确地描述TC17钛合金的高温流动行为。  相似文献   

2.
为了分析TA7钛合金的热变形工艺参数,通过高温压缩试验对TA7钛合金的高温变形行为进行了研究。试验温度为1123~1273K,应变速率为0.001~1 s~(-1)。此外,提出了一种修正并联本构模型用来分析应变速率、变形温度及应变对流动应力的影响。然后,基于动态模型,建立了TA7钛合金的热加工图,并通过微观组织分析对加工图的准确性进行了验证。结果表明,TA7钛合金合理的工艺参数为变形温度1223 K,应变速率0.001 s~(-1),而其非稳态区域位于低温高应变速率区。  相似文献   

3.
通过TC4-DT钛合金在1181~1341 K,0.01~10 s~(-1)条件下热模拟压缩试验,得到其在不同条件下高温变形真应力-真应变曲线。采用回归分析和多项式拟合建立了应变补偿高温变形本构方程。结果表明:各变形条件下的流变应力曲线均呈现应变硬化和流动软化,低温高应变速率特征更明显。当应变速率低于1 s~(-1)时,预测值与实验值吻合程度较高,相关系数和平均相对误差绝对值分别为0.9952和5.78%,此修正模型可作为TC4-DT钛合金高温变形本构方程。  相似文献   

4.
采用Gleeble-3500热模拟试验机对TC21钛合金进行了高温热压缩变形试验。试验变形温度为890~990℃,应变速率为0.01~10s~(-1)。通过分析不同热变形条件下获得的应力-应变曲线和微观组织,探究合金在高温变形中的微观组织演变规律。结果表明:TC21钛合金对变形温度和变形速率极其敏感,流变应力随着应变速率的增加和温度的降低而升高。随着变形温度的升高和应变速率的降低,变形中动态回复作用增强,微观组织中动态再结晶晶粒数目减少。此外,应用线性回归方法,建立TC21钛合金的高温本构方程,经过实验验证,该本构模型与实验结果吻合较好;基于Prasad失稳准则,建立了TC21钛合金热加工图,为TC21钛合金锻造工艺的制定提供理论依据。  相似文献   

5.
在不同变形温度(T=850~1050℃)和不同应变速率(ε觶=0.001~5s~(-1))下采用Gleeble~(-1)500D热模拟试验机对热等静压态TC4钛合金进行了高温热压缩试验,分析了真应力-真应变曲线特征及热变形参数对显微组织的影响,建立适用于热等静压态TC4钛合金高温流动行为的Arrhenius方程及DMM(动态材料模型)加工图。结果表明:峰值应力随应变速率的增大及变形温度的降低而增大;显微组织随变形温度升高发生马氏体相变,随应变速率增大,β相析出次生α'相,且T=900℃、ε觶=0.01s~(-1)时获得(α+β)双态组织,表明该条件能够改善材料加工性能。误差分析表明,峰值应力计算值与试验值平均相对误差绝对值仅6.77%,证明建立的本构方程能够准确预测材料高温变形时的流动应力。加工图分析表明材料流动失稳区为T=850~950℃、ε觶0.6 s~(-1),最佳加工区间为T=850~950℃、ε觶=0.01~0.1s~(-1)。  相似文献   

6.
通过热模拟压缩试验对铸态TC17钛合金的高温变形行为进行了研究。温度范围1073~1373 K,应变速率范围0.01~20 s~(-1)。建立了4种本构模型,分别是应变补偿双曲正弦模型、修正Arrhenius模型、Johnson Cook模型和修正Johnson Cook模型,用来表征铸态TC17钛合金的高温流动应力。采用相关系数、平均相对误差和相对误差统计分析了4种模型的准确性。结果表明:JohnsonCook模型不能用来描述铸态TC17钛合金高温流动应力;在α+β两相区,应变补偿双曲正弦模型精度最高,而在β单相区修正Johnson Cook模型更为准确;在整个变形温度范围内,应变补偿双曲正弦模型比其他几种模型的准确性更高。  相似文献   

7.
TC4钛合金EB炉扁锭高温压缩变形行为和热加工图   总被引:1,自引:0,他引:1  
采用Gleeble-3500热/力学模拟试验机对电子束冷床炉(EB炉)熔炼的TC4钛合金扁锭进行高温压缩实验,研究了TC4钛合金扁锭在变形量为40%,温度为1023~1173 K,应变速率为0.001~1 s-1的条件下热压缩变形行为.通过使用双曲正弦形式修正的Arrhenius关系来描述TC4钛合金高温压缩变形时最大变形抗力的本构方程,并绘制出TC4钛合金的加工图.结果 表明,真应力-应变图可以很好地反映TC4钛合金在不同变形条件下的应力状态,且应力值和实验值有较好相关性.基于Prasad判据得到铸态TC4钛合金的热加工图的最佳变形区间为:变形温度为1023~1173 K,应变速率为0.001~0.002 s-1的区域及变形温度为1073~1160K,应变速率为0.316~1 s-1的区域.  相似文献   

8.
TC4钛合金高温变形行为及其流动应力模型   总被引:10,自引:4,他引:6  
研究变形工艺参数对TC4钛合金高温变形行为的影响.热模拟压缩实验时选取的变形温度为1 093~1 303K:应变速率为0.001~10.0/s;变形程度为60%.结果表明:TC4钛合金在变形开始阶段,流动应力随应变的增加迅速增加,当应变超过一定值后,流动应力开始下降并逐渐趋于稳定,出现稳态流动特征;变形温度升高和应变速率减小使TCA钛合金高温变形时的稳态应力和峰值应力显著降低;应变速率和变形温度会影响TC4钛合金进入稳态变形时变形程度的大小.利用多元回归分析建立TC4钛合金在高温变形时的流动应力模型,模型的计算值与实验数据的平均相对误差为6.25%,该模型较好地描述TC4钛合金在高温变形过程中的流动行为.  相似文献   

9.
高温变形参量对TC21钛合金组织与性能的影响   总被引:1,自引:0,他引:1  
在880~950 ℃和不同应变速率0.01~10 s-1条件下,将TC21钛合金高温压缩变形至50%.研究高温变形参量对流动应力及微观组织的影响规律,建立了TC21合金的本构方程.结果表明:流变应力随变形温度的降低及应变速率的增大而升高,变形温度与应变速率对TC21钛合金显微组织的影响显著,应变速率越低,组织球化现象越明显.高温变形过程中,TC21钛合金的流变应力与Zener-Hollomon参数的指数形式呈线性关系.  相似文献   

10.
为了分析TA7钛合金的热变形工艺参数,通过高温压缩试验对TA7钛合金的高温变形行为进行了研究。试验温度为1123~1273K,应变速率为0.001~1s-1。此外,提出了一种修正并联本构模型用来分析应变速率、变形温度及应变对流动应力的影响。然后,基于动态模型,建立了TA7钛合金的热加工图,并通过微观组织分析对加工图的准确性进行了验证。结果表明,TA7钛合金合理的工艺参数为变形温度1223K,应变速率0.001s-1,而其非稳态区域位于低温高应变速率区。  相似文献   

11.
The hot deformation behavior of the novel Pb-Mg-10Al-1B alloy has been investigated by hot compressive tests in the temperature range from 453 to 613 K within the strain rate range of 0.01-1 s?1 using a Gleeble-1500 thermal simulator testing machine. The results show that the flow stress increases with increasing strain rate and decreasing temperature. The hot deformation behavior can be described by a constitutive equation with hyperbolic sine function or Zener-Hollomon parameter. The hot deformation activation energy of Pb-Mg-10Al-1B alloy is 151.2543 kJ/mol. The processing map at the strain of 0.4 exhibits an instable deformation domain of 460-520 K at 0.06-1 s?1. According to the processing map, the optimum hot-working conditions for Pb-Mg-Al-B alloy are 573 K and 0.01 s?1.  相似文献   

12.
为了获得BFe10-1-2白铜合金的合理热变形工艺参数,通过热模拟压缩试验对该合金的高温变形行为进行了研究。试验温度为1023~1273K,应变速率为0.001~10s-1。通过流变曲线分析、动力学分析及加工图对BFe10-1-2白铜合金的高温变形行为进行了表征,计算出BFe10-1-2白铜合金在热压缩变形过程中的激活能为425.299KJ/mol。通过Zener-Holloman参数以及真应变建立了BFe10-1-2白铜合金的本构方程用以描述该合金的高温流动应力。对计算的流动应力值与试验值进行了对比,结果表明:本构方程可以准确描述该合金的高温流动行为。此外,基于动态模型,建立了BFe10-1-2白铜合金的热加工图,并通过宏观及微观组织分析对加工图的准确性进行了验证。  相似文献   

13.
The flow stress behavior of spray-formed Al-9Mg-1.1Li-0.5Mn alloy was studied using thermal simulation tests on a Gleeble-3500 machine over deformation temperature range of 300-450 °C and strain rate of 0.01-10 s?1. The microstructural evolution of the alloy during the hot compression process was characterized by transmission electron microscopy (TEM) and electron back scatter diffractometry (EBSD). The results show that the flow stress behavior and microstructural evolution are sensitive to deformation parameters. The peak stress level, steady flow stress, dislocation density and amount of substructures of the alloy increase with decreasing deformation temperature and increasing strain rate. Conversely, the high angle grain boundary area increases, the grain boundary is in serrated shape and the dynamic recrystallization in the alloy occurs. The microstructure of the alloy is fibrous-like and the main softening mechanism is dynamic recovery during steady deformation state. The flow stress behavior can be represented by the Zener-Hollomon parameter Z in the hyperbolic sine equation with the hot deformation activation energy of 184.2538 kJ/mol. The constitutive equation and the hot processing map were established. The hot processing map exhibits that the optimum processing conditions for Al-9Mg-1.1Li-0.5Mn alloy are in deformation temperature range from 380 to 450 °C and strain rate range from 0.01 to 0.1 s?1.  相似文献   

14.
在变形温度为623~773 K,应变速率为0.001~0.1 s~(-1)的条件下,通过INSPEKT Table 100 kN电子万能高温试验机对轧制态ME20M镁合金进行了热拉伸实验,分析了变形温度和应变速率对材料流动应力的影响,建立了热变形条件下的本构模型及加工图。结果表明:随着变形温度的降低和应变速率的升高,轧制态ME20M镁合金的流动应力增加;建立的本构模型预测峰值应力与实验结果吻合较好,平均相对误差为5.19%;考虑应变对本构模型中材料常数影响后的预测应力值与实验值的相关度较高,平均相对误差为6.00%;最佳热加工范围为673~773 K、应变速率0.001~0.01 s~(-1)。  相似文献   

15.
Hot compression tests of 8009Al alloy reinforced with 15% SiC particles (8009Al/15%SiCp composites) prepared by powder metallurgy (direct hot extrusion methods) were performed on Gleeble-3500 system in the temperature range of 400-550 °C and strain rate range of 0.001-1 s?1. The processing map based on the dynamic material model was established to evaluate the flow instability regime and optimize processing parameters; the associated microstructural changes were studied by the observations of optical metallographic and scanning electron microscopy. The results showed that the flow stress increased initially and reached a plateau after peak stress value with increasing strain. The peak stress increased as the strain rate increased and deformation temperature decreased. The optimum parameters were identified to be deformation temperature range of 500-550 °C and strain rate range of 0.001-0.02 s?1 by combining the processing map with microstructural observation.  相似文献   

16.
采用Gleeble-1500D热模拟试验机进行热压缩实验,研究了TC4-DT钛合金在温度850~980℃、应变速率为0.001~10 s-1、变形量为50%条件下的热变形行为.根据应力-应变曲线分析了该合金的流变应力变化特点,建立了该合金的Arrhenius型本构方程及加工图.结果表明:流变应力随变形温度降低及应变速率增大而升高;变形温度与应变速率对TC4-DT合金应力影响显著;本实验测得的平均激活能为587.2 kJ/mol;该合金合适的加工条件为ε<0.6 s-1,温度大于850℃.  相似文献   

17.
本文借助Gleeble-3800热模拟试验机系统地研究了铸态粗晶Ti-5553合金在温度700 ℃~1100 ℃、应变速率为0.001 s-1~10 s-1条件下的高温变形行为。研究结果表明合金的流变应力对变形温度和速率都有强敏感性,流变软化过程也随变形参数的改变呈现出不同的模式。通过经典的动力学模型,建立了合金高温变形的本构关系和激活能分布图,进一步基于动态材料模型构建了合金的热加工图并实现了对不同加工区间变形机制的识别。合金在低温区(700 ℃)和高速率区( 1 s-1)均展现出失稳变形的特征,包括外部开裂、绝热剪切带、局部流变等机制,在实际加工中应对这些加工区域进行规避。合金在800 ℃及中低速率( 0.1 s-1)变形下的主导机制为α相的动态析出,在中高温(900 ℃-1100 ℃)及中低速率变形下的主导机制为动态回复与动态再结晶的结合。此外,合金在高温较低应变速率(1100 ℃/0.01 s-1)条件的变形中表现出大范围动态再结晶的行为特点并伴随稳定的流变软化,因此此条件附近的参数区间被认定为该合金的最优加工窗口,应在实际加工中给予优先考虑。  相似文献   

18.
Hot compression tests of 2050 Al–Li alloy were performed in the deformation temperature range of 340–500 °C and strain rate range of 0.001–10 s–1 to investigate the hot deformation behavior of the alloy. The effects of friction and temperature difference on flow stress were analyzed and the flow curves were corrected. Based on the dynamic material model, processing map at a strain of 0.5 was established. The grain structure of the compressed samples was observed using optical microscopy. The results show that friction and temperature variation during the hot compression have significant influences on flow stress. The optimum processing domains are in the temperature range from 370 to 430 °C with the strain rate range from 0.01 to 0.001 s–1, and in the temperature range from 440 to 500 °C with the strain rate range from 0.3 to 0.01 s–1; the flow instable region is located at high strain rates (3–10 s–1) in the entire temperature range. Dynamic recovery (DRV) and dynamic recrystallization (DRX) are the main deformation mechanisms of the 2050 alloy in the stable domains, whereas the alloy exhibits flow localization in the instable region.  相似文献   

19.
Hot deformation behavior and microstructure evolution of TC4 titanium alloy   总被引:1,自引:0,他引:1  
The hot deformation behavior of Ti-6Al-4V(TC4) titanium alloy was investigated in the temperature range from 650 °C to 950 °C with the strain rate ranging from 7.7×10-4 s-1 to 7.7×10-2 s-1.The hot tension test results indicate that the flow stress decreases with increasing the deformation temperature and increases with increasing the strain rate.XRD analysis result reveals that only deformation temperature affects the phase constitution.The microstructure evolution under different deformation conditions was characterized by TEM observation.For the deformation of TC4 alloy,the work-hardening is dominant at low temperature,while the dynamic recovery and dynamic re-crystallization assisted softening is dominant at high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号