首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
采用Ti-28Ni(质量分数,%)钎料在1 040℃实现了TZM合金与ZrCp-W复合材料的真空钎焊连接,分析了钎焊时间对TZM合金与ZrCp-W复合材料接头界面组织及力学性能的影响.结果表明,钎焊接头的典型界面结构为TZM/Ti(s,s)/Ti2Ni/(Ti,Zr)C+W(s,s)/ZrCp-W,钎缝宽度随保温时间的延长而增大,其中Ti(s,s)层的厚度没有变化,Ti2Ni层厚度略有降低,而扩散层厚度随保温时间的延长稍有增加.当保温时间为10 min时,接头获得最大抗剪强度值120 MPa,接头断裂发生在TZM母材.  相似文献   

2.
采用Ag-Cu钎料对Ti_3Al与316L不锈钢进行真空钎焊连接,通过扫描电镜、能谱分析仪和X射线衍射仪分析了接头界面结构并对其形成机理进行了分析,同时,研究了钎焊温度对接头界面组织以及抗剪强度的影响。结果表明,在固定保温时间为5 min时,接头的抗剪强度先随着钎焊温度的升高而增大,当钎焊温度为800℃时,接头抗剪强度达到最大值为343 MPa,当钎焊温度进一步升高时,接头抗剪强度会呈现降低趋势。接头的典型界面结构为Ti_3Al/Al Cu_2Ti+Cu_2Ti+Cu(s,s)+Ag(s,s)+Cu Ti+Fe_2Ti/316L不锈钢。  相似文献   

3.
采用AgCu-4.5Ti钎料直接钎焊TC4钛合金与SiO2复合材料,研究了接头界面组织结构及形成机理,分析了不同工艺参数下界面变化对接头抗剪强度的影响。研究表明:接头界面典型结构为SiO2复合材料/TiSi2/Cu4Ti3+Cu3Ti3O/ Ag(s,s)+Cu(s,s)/TiCu/Ti2Cu/α,β-Ti/TC4;钎焊温度的升高可促进两侧母材界面反应层厚度的增加,同时钎缝中部的AgCu共晶组织消失,化合物相增多;随着接头界面结构的变化,接头抗剪强度表现出先升高后降低的趋势:当钎焊温度为850 ℃,保温10 min时,接头室温最高抗剪强度达到7.8 MPa  相似文献   

4.
TiAl基合金与Ni基合金钎焊连接接头界面组织及性能   总被引:1,自引:0,他引:1  
采用BNi2钎料实现了TiAl基合金与Ni基高温合金的钎焊。采用扫描电镜、能谱分析和X射线衍射等手段对钎焊接头的界面组织结构及生成相进行分析,并对接头的抗剪强度进行测试。结果表明,钎焊接头的典型界面结构为:GH99/(Ni)ss (γ)+Ni3B+CrB+富Ti-硼化物/TiNi2Al/TiNiAl+Ti3Al/TiAl;随着钎焊温度的升高或保温时间的延长,较多的B和Si元素扩散进入两侧母材,导致钎缝中硼化物数量减少,而TiAl/钎缝界面的TiNi2Al和TiNiAl+Ti3Al金属间化合物层厚度增加;当钎焊温度为1050 ℃,保温时间为5 min时,接头的抗剪强度达到最大为205 MPa,接头主要断裂于TiNiAl金属间化合物层。当钎焊温度升高或保温时间继续延长时,TiNiAl厚度显著增加,导致接头强度下降  相似文献   

5.
采用Ti-8.5Si、Ti-33Cr和Ti-30V-3Mo钎料实现了钛锆钼(TZM)合金的高温真空钎焊连接,借助SEM、EDS及润湿性试验和抗剪试验等分析方法,研究了钛基钎料高温钎焊TZM及钎焊接头经高温热循环后的热稳定性。结果表明,Ti-8.5Si、Ti-33Cr在1520oC/6min的工艺条件下良好润湿TZM,润湿角分别为10o和9o,Ti-8.5Si钎料的铺展面积大于Ti-33Cr钎料的铺展面积,Ti-30V-3Mo钎料在1680oC/8 min的条件下在TZM板上的润湿角为5°。Ti-8.5Si/TZM接头界面形成(Ti, Mo)固溶体,钎缝中心由(Ti, Mo)固溶体和Ti5Si3相组成。Ti-33Cr/TZM接头界面形成(Ti,Mo)固溶体,钎缝中心由(βTi,Cr)固溶体和αTi+(αTi+αTi Cr2)共晶组成。Ti-30V-3Mo/TZM接头,钎缝区主要由(βTi, V)固溶体和αTi组成,界面区由Ti与Mo形成(Ti,Mo)固溶体。3种钎料钎焊TZM,均形成固溶体钎焊接头而实现钎料与TZM的冶金结合,钎焊接头强度分别为135.8 MPa(Ti-8.5Si)、132 MPa(Ti-33Cr)和131 MPa(Ti-30V-3Mo)。Ti-8.5Si/TZM、Ti-33Cr/TZM接头经过1200oC/60min没有观察到明显的晶间渗入和母材溶蚀,界面固溶体结合形式无变化。Ti-30V-3Mo/TZM接头经过1550oC/60 min热循环后,观察到1个晶粒深度的晶间腐蚀,没有明显的母材溶蚀现象,且界面依然保持固溶体结合形式。3种钛基钎料可实现TZM的高温钎焊,依靠界面固溶体实现冶金结合,经高温长时间热循环后钎焊接头组织性能稳定,发生晶间渗入敏感性低,为TZM的高温应用连接提供理论与试验指导。  相似文献   

6.
采用Al-Si-Mg钎料成功实现了5005铝合金与1Cr18Ni9Ti不锈钢的真空钎焊,借助扫描电镜、能谱分析仪和X射线衍射仪对焊后接头界面组织进行分析,同时对接头抗剪强度进行测试.结果表明,焊后接头界面结构从1Cr18Ni9Ti不锈钢侧到5005铝合金侧的界面组织依次为FeAl,FeAl3,FemAln+αAl.随着钎焊温度的升高或保温时间的延长,接头抗剪强度均呈现先升高后降低的变化趋势.当钎焊温度为580℃,保温时间为15 min时,接头抗剪强度达到最大值49 MPa.接头断裂形式受钎焊温度的影响,当钎焊温度较低时,接头断裂于铝合金侧氧化膜层及FemAln+αAl反应层;温度升高至580℃时,接头断裂于FemAln+αAl反应层中,接头抗剪强度最高.  相似文献   

7.
Ag-Cu+WC复合钎料钎焊ZrO2陶瓷和TC4合金   总被引:1,自引:0,他引:1       下载免费PDF全文
采用新型Ag-Cu+WC复合钎料进行ZrO2陶瓷和TC4合金钎焊连接,探究了接头界面组织及形成机制,分析了钎焊温度对接头界面结构和力学性能的影响. 结果表明,接头界面典型结构为ZrO2/TiO+Cu3Ti3O/TiCu+TiC+W+Ag(s,s)+Cu(s,s)/TiCu2/TiCu/Ti2Cu/TC4. 钎焊过程中,WC颗粒与Ti发生反应,原位生成TiC和W增强相,为Ti-Cu金属间化合物、Ag基和Cu基固溶体提供了形核质点,同时抑制了脆性Ti-Cu金属间化合物的生长,优化了接头的微观组织和力学性能. 随钎焊温度的升高,接头反应层的厚度逐渐增加,WC颗粒与Ti的反应程度增强. 当钎焊温度890 ℃、保温10 min时,复合钎料所得接头抗剪强度达到最高值82.1 MPa,对比Ag-Cu钎料所得接头抗剪强度提高了57.3%.  相似文献   

8.
在钎焊时间为60~1500s,钎焊温度1163~1273K的条件下,采用TiZrNiCu钎料对石墨和TC4钛合金进行了钎焊试验。利用扫描电镜及能谱仪对接头的界面组织进行了研究。结果表明,接头界面结构为石墨/TiC/(Ti,Zr)2(Cu,Ni)/Ti(s.s)+(Ti,Zr)2(Cu,Ni)/TC4。以抗剪强度评价石墨和TC4钛合金接头的力学性能,发现当钎焊温度为1193K,保温时间为300s时,接头抗剪强度最高,为15MPa。  相似文献   

9.
采用Ti-8.5Si、Ti-33Cr和Ti-30V-3Mo钎料实现了钛锆钼(TZM)合金的高温真空钎焊连接,借助SEM、EDS及润湿性试验和抗剪试验等分析试验方法,研究了钛基钎料高温钎焊TZM及钎焊接头经高温热循环后的热稳定性。结果表明,Ti-8.5Si、Ti-33Cr在1520℃/6min的工艺条件下良好润湿TZM,润湿角分别为10°和9°,Ti-8.5Si钎料的铺展面积大于Ti-33Cr钎料的铺展面积,Ti-30V-3Mo钎料在1680℃/8min的条件下在TZM板上的润湿角为5°。Ti-8.5Si/TZM接头界面形成(Ti,Mo)固溶体,钎缝中心由(Ti,Mo)固溶体和Ti5Si3相组成。Ti-33Cr/TZM接头界面形成(Ti,Mo)固溶体,钎缝中心由(βTi,Cr)固溶体和αTi+(αTi+αTiCr2)共晶组成。Ti-30V-3Mo/TZM接头,钎缝区主要由(βTi,V)固溶体和αTi组成,界面区由Ti与Mo形成(Ti,Mo)固溶体。三种钎料钎焊TZM,均形成固溶体钎焊接头而实现钎料与TZM的冶金结合,钎焊接头强度分别为135.8MPa(Ti-8.5Si)、132MPa(Ti-33Cr)和131MPa(Ti-30V-3Mo)。Ti-8.5Si/TZM、Ti-33Cr/TZM接头经过1200℃/60min没有观察到明显的晶间渗入和母材溶蚀,界面固溶体结合形式无变化。Ti-30V-3Mo/TZM接头经过1550℃/60min热循环后,观察到1个晶粒深度的晶间腐蚀,没有明显的母材溶蚀现象,且界面依然保持固溶体结合形式。三种钛基钎料可实现TZM的高温钎焊,依靠界面固溶体实现冶金结合,经高温长时间热循环后钎焊接头组织性能稳定,发生晶间渗入敏感性低,为TZM的高温应用连接提供理论与试验指导。  相似文献   

10.
在钎焊时间120~1500s、钎焊温度1093~1223K的条件下,采用Ag-Cu共晶钎料对铜和1Cr18Ni9Ti进行钎焊,利用扫描电镜及能谱仪对其接头的界面组织进行了研究。结果表明,接头界面结构为Cu/Cu(s.s)/Ag(s.s)+Cu(s.s)/1Cr18Ni9Ti。以抗剪强度评价其接头的力学性能,发现当钎焊温度为1173K、保温时间为300s时,接头抗剪强度最高,为214MPa。  相似文献   

11.
Reliable brazing of TZM alloy and ZrC particle reinforced (ZrCp) W composite was achieved in this study by using Ti-28Ni eutectic brazing alloy. The typical interfacial microstructure of TZM/Ti-28Ni/ZrCp-W brazed joint consisted of a Ti solid solution (Ti(s, s)) layer, a continuous Ti2Ni layer and a diffusion layer mainly composed of W particles and (Ti, Zr)C particles. With an increase of brazing temperature, more ZrC particles and W particles entered the molten brazing alloy, which broadened the brazing seam and diminished the Ti2Ni layer, resulting in the disappearance of the Ti2Ni layer eventually. Meanwhile, more Ti(s, s) stripes were observed on the TZM side. The presence of continuous Ti2Ni intermetallic phase and Ti(s, s) stripes structure in joints deteriorated the joining properties, which resulted in the formation of brittle fracture under shear test. In addition, the fracture path was related to the brazing temperature, and cracks initiate and propagate in the continuous Ti2Ni layer at lower temperatures. However, the fracture path tended to be located at the TZM substrate close to the interface between TZM and the brazing seam when the brazing temperature exceeded 1040 °C. The optimal room temperature shear strength reached 120.5 MPa when brazed at 1040 °C for 10 min and the fracture surface exhibited cleavage fracture characteristics, and the shear strength at high temperature of 800 °C for the specimens with highest shear strength at room temperature reached 77.5 MPa.  相似文献   

12.
采用SEM,EDS,XRD和力学试验机等分析测试方法,研究了Ni-Ti钎料对TZM合金钎缝组织和性能的影响。结果表明:Ni-Ti钎料可实现TZM的高温真空钎焊连接。Ni-13.7Ti/TZM界面区,母材中的Mo与钎料中的Ni形成MoNi相,是钎料与TZM形成冶金结合的主要原因。TZM/Ni-44Ti/TZM界面区Ni-44Ti钎料中的Ti与Mo反应,Mo-Ti固溶体,使钎料和TZM形成冶金结合。Ni-44Ti钎料钎焊TZM合金产生严重晶间渗入现象。降低钎料中Ti的含量,晶间渗入和母材溶蚀现象大幅减弱;TZM/Ni-13.7Ti/TZM钎焊接头剪切强度193MPa,TZM/Ni-44Ti/TZM钎焊接头剪切强度167MPa,晶间渗入使钎缝强度降低,降低钎料中的Ti含量,钎焊接头强度提高。  相似文献   

13.
Cu75Pt25 brazing filler was applied to brazing GH99 superalloy to Nb, and the sound joints were obtained by adjusting brazing parameters. The typical interfacial microstructure of the brazed joint was Nb/Nb7Ni6+NbNi3/ Ni(s,s)+Cr-rich NbNi3+(NbCr2+NbNi3)/GH99. The effects of brazing temperature and holding time on the interfacial microstructure of GH99/Cu75Pt25/Nb joints were studied. The results showed that the solution and diffusion of Ni atoms from GH99 substrate into brazing seam played a critical role in the interfacial microstructure evolution. As the brazing temperature rose, the Nb–Ni reaction layer was formed instead of the initial Nb3Pt layer, and the thickness increased firstly and then remained constant. The highest shear strength of the joint reached 152 MPa when brazed at 1150 °C for 15 min. All of the joints presented a brittle fracture mode during shear test, and the fracture location changed from Nb3Pt layer to Nb–Ni compounds layer.  相似文献   

14.
TiBw/TC4 composite was brazed to Ti60 alloy successfully using TiZrNiCu amorphous filler alloy, and the interfacial microstructures and mechanical properties were characterized by SEM, EDX, XRD and universal tensile testing machine. The typical interfacial microstructure was TiBw/TC4 composite/β-Ti + TiB whiskers/(Ti, Zr)2(Ni, Cu) intermetallic layer/β-Ti/Ti60 alloy when being brazed at 940 °C for 10 min. The interfacial microstructure evolution was influenced strongly by the diffusion and reaction between molten fillers and the substrates. Increasing brazing temperature decreased the thickness of brittle (Ti, Zr)2(Ni, Cu) intermetallic layer, which disappeared finally when the brazing temperature exceeded 1020 °C. Fracture analyses indicated that cracks were initialized in the brittle intermetallic layer when (Ti, Zr)2(Ni, Cu) phase existed in the brazing seam. The maximum average shear strength of joints reached 368.6 MPa when brazing was conducted at 1020 °C. Further increasing brazing temperature to 1060 °C, the shear strength was decreased due to the formation of coarse lamellar (α+β)-Ti structure.  相似文献   

15.
利用超声波钎焊方法使用ZnAlSi钎料实现了Fe36Ni合金与45%SiCp/2024Al和55%SiCp/A356两种复合材料的连接,并得到由SiC颗粒增强的复合焊缝.通过扫描电镜、能谱等方法对焊缝的微观结构以及断口形貌进行了观察,对接头的压剪强度进行了测试,分析了Fe36Ni与两种复合材料钎焊接头微观组织和接头强度的差异.结果表明,在Fe36Ni与两种复合材料的钎缝中,钎料与两侧母材界面均形成良好的冶金结合,SiC颗粒均匀分布于焊缝中.Fe36Ni与45%SiCp/2024Al的接头抗剪强度为110~145 MPa,Fe36Ni与55%SiCp/A356的接头抗剪强度为75~85 MPa.Fe36Ni与45%SiCp/2024Al的接头断裂位置为钎缝中,而Fe36Ni与55%SiCp/A356的接头断裂位置位于Fe36Ni与钎料的界面上.  相似文献   

16.
The corrugated sandwich structure, consisting of a CP Ti (commercially pure titanium) core between two Ti-6Al-4V face sheets, was brazed using pasty Ti-37.5Zr-15Cu-10Ni as filler alloy, at the temperature of 870°C for 5, 10, 20, and 30 min. The effect of brazing time on the microstructure and elemental distribution of the brazed joints was examined by means of SEM, EDS, and XRD analyses. It was found that various intermetallic phases were formed in the brazed joints, following a brazing time of 5 min, and their contents were decreased by the increment of brazing time, while prolonged brazing time resulted in a fine, acicular Widmanstätten microstructure throughout the entire joint. In addition, shear testing was performed in the brazed corrugated specimens in order to indirectly assess the quality of the joints. The debonding between CP Ti and Ti-6Al-4V was observed in the specimen brazed for 5 min and the fracture of the CP Ti corrugated core occurred after 30 min of brazing time. Additionally, when brazed for 10 min or 20 min, brittle intermetallic compounds in the joints and the grain growth of the base metal were controllable. Therefore, the sandwich structures failed without debonding in the joints or fracture within the base metal, demonstrating a good combination of strength and ductility.  相似文献   

17.
卞红  田骁  冯吉才  高峰  胡胜鹏 《焊接学报》2018,39(5):33-36,68
采用TiZrNiCu非晶钎料实现了TC4和Ti60异种钛合金的真空钎焊连接,利用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)等分析手段研究了钎焊工艺参数对接头界面组织结构及力学性能的影响. 结果表明,TC4/TiZrNiCu/Ti60钎焊接头的典型界面结构为:TC4/α-Ti+β-Ti+(Ti,Zr)2(Ni,Cu)/Ti60. 随着钎焊温度升高或保温时间延长,片层状α+β相逐渐填充整条钎缝,(Ti,Zr)2(Ni,Cu)相含量减少且分布更加均匀. 接头室温抗拉强度随钎焊温度或保温时间的增加均先增大后减小,在990 ℃/10 min钎焊条件下所获接头抗拉强度达到最大为535.3 MPa. 断口分析结果表明,断裂位于钎缝中,断裂方式为脆性断裂.  相似文献   

18.
采用Ni-34Ti共晶钎料实现了TiAl合金的钎焊连接,分析了TiAl合金钎焊接头的界面结构,重点研究了钎焊温度对接头组织及性能的影响规律.结果表明,Ni-34Ti共晶钎料主要由TiNi相和TiNi3相组成,钎料熔点为1 120 ℃.不同钎焊温度下获得的接头界面组织均呈现对称特征,无气孔和裂纹等缺陷,接头中主要形成了TiNiAl2,B2,TiNiAl和TiNi2Al四种物相.Al元素在钎缝中的快速扩散,促进了钎缝中Ti-Ni-Al三元化合物的形成.钎焊温度为1 180 ℃保温10 min条件下,TiAl合金接头获得了最大的室温抗剪强度87 MPa.剪切过程中,裂纹容易在富含TiNi2Al相的区域产生和扩展,大量脆性TiNi2Al相的存在对接头的性能是有害的.  相似文献   

19.
An amorphous Ti-37.5Zr-15Cu-15Ni (wt.%) ribbon fabricated by vacuum arc remelting and rapid solidification was used as filler metal to vacuum braze TiAl alloy (Ti-45Al-2Mn-2Nb-1B (at.%)). The effects of brazing temperature and time on the microstructure and strength of the joints were investigated in details. The typical brazed joint major consisted of three zones and the brazed joints mainly consisted of α2-Ti3Al phase, α-Ti phase and (Ti, Zr)2(Cu, Ni) phase. When the brazing temperature varied from 910 °C to 1010 °C for 30 min, the tensile strength of the joint first increased and then decreased. With increasing the brazing time, the tensile strength of the joint increased. The maximum room temperature tensile strength was 468 MPa when the specimen was brazed at 930 °C for 60 min. All the fracture surfaces assumed typical brittle cleavage fracture characteristic. The fracture path varied with the brazing parameter and cracks preferred to initiate at (Ti, Zr)2(Cu, Ni) phase and propagation path were mainly determined by the content and distribution of α-Ti phase and (Ti, Zr)2(Cu, Ni) phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号