首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
SCS-6 SiC纤维增强钛基复合材料的界面反应   总被引:3,自引:0,他引:3  
SCS-6 SiC纤维增强Super α2钛基复合材料界面反应较严重,其反应产物分布可达6层之多;SCS-6 SiC/Ti2AlNb及SCS-6 SiC/IMI834复合材料仅形成3-4层界面反应产物SCS-6 SiC/IMI834复合材料在界面处形成的S2硅化物可在一定温度下阻止反应的进一步进行,使复合材料具有很好的热稳定性.对界面反应热力学研究表明,Ti3Al+C→Ti3AlC反应导致了界面反应产物Ti3AlC的形成.  相似文献   

2.
采用箔-纤维-箔法制备SiC_f/Ti6Al4V/Cu复合材料,研究Ti6Al4V在连续SiC纤维增强Cu基复合材料中作界面改性涂层时的界面反应结合特征.利用光学显微镜、扫描电镜和能谱仪分析复合材料显微组织、断口形貌以及SiC_f/Ti6Al4V界面和Ti6A14WCu界面的反应扩散特征.结果表明:该复合材料的抗拉强度并没有显著提高;SiC_f/Ti6Al4V界面反应非常微弱;而Ti6Al4V/Cu界面反应非常明显,主要是Ti原子与Cu原子之间的反应,反应层厚度约为20 μm;反应产物主要呈4层分布,分别为CuTi_2、CuTi、Cu_4Ti_3和Cu_4Ti.  相似文献   

3.
SiC长纤维增强钛合金基复合材料的界面研究   总被引:3,自引:0,他引:3  
研究了SiC/TC4和SiC/Ti40复合材料在不同热处理态下的界面行为。结果袭明,SiC/Ti40复合材料相邻两纤维间存在TiC析出物,在1000℃处理后,TiC析出物消失;2种复合材料界面反应厚度随处理温度升高和时间延长而增大:SCS-6SiC/TC4和SiC/Ti40复合材料界面产物均为Ti5Si3。  相似文献   

4.
SiCf/Super α2复合材料的界面反应及对性能的影响   总被引:4,自引:0,他引:4  
采用透射电镜研究了SiCf/Super α2复合材料的界面反应及其对抗拉强度的影响。结果表明,制备状态的复合材料的界面反应产物为4层分布,经高温长时间热处理后,界面反应区可分为6层,电子衍射分析和成分分析表明:界面反应产物为TiC,Ti3AlC,Ti3Si和Ti5Si3。界面反应层的加厚服从抛物线规律,是一个扩散控制过程。复合材料的抗拉强度随界面反应层的加厚而下降,计算表明:SCS-6 SiCf/Super α2复合材料的抗拉强度不受影响的临界界面反应区厚度为0.75μm。  相似文献   

5.
研究了SiC/Ti40复合材料在不同热处理态下的界面行为。结果表明,SiC/Ti40复合材料相邻两纤维间存在TiC析出物,在1000℃处理时,TiC析出物消失;SiC/Ti40复合材料界面反应厚度与处理时间的平方根呈线性关系,温度超过800℃,界面厚度明显增加;SCS-6SiC/Ti40复合材料界面产物为Ti5Si3。  相似文献   

6.
SiCf/Ti-6Al-4V复合材料的断裂韧性   总被引:1,自引:1,他引:0  
采用三点弯曲法测定了SiC纤维单向增强的Ti-6Al-4V复合材料的表观断裂韧性,讨论了界面反应对断裂韧性的影响.研究结果表明,在裂纹尖端塑性变形区的未断纤维的桥联对复合材料的断裂韧性起很大的作用.经过热处理后,SiCf/Ti-6Al-4V复合材料的断裂韧性降低,主要是由于严重的界面反应,使得SiC纤维受到一定的损伤,因而降低了纤维的承载能力,并使基体钛合金的脆性增大.  相似文献   

7.
利用纤维涂层法(FMC)、结合热压工艺制备了SiC纤维增强Ti55基复合材料(SiCf/Ti55).主要研究复合材料在经不同条件真空热暴露处理后,其反应产物相形成的反应序列以及界面反应动力学.结果表明,仅C、Si和Ti等元素参与了界面反应.在1000 ℃热暴露时,SiCf/Ti55复合材料界面反应产物序列为SiC | Ti3SiC2 | Ti5Si3+TiC | TiC | Ti55.但是,在低温热暴露的复合材料中不存在Ti3SiC2相.SiCf/Ti55复合材料界面反应产物的生长受扩散控制且遵循抛物线生长规律,其生长激活能Qk及指数系数k0分别为198.16 kJ·mol-1,1.79(10-3 m·s-1/2.相比SiCf/Ti复合材料和SiCf/Ti2AlNb复合材料,SiCf/Ti55复合材料拥有一个高稳定性的界面.然而,相比SiCf/Ti600复合材料和SCS-6 SiCf/ super а2复合材料,SiCf/Ti55复合材料中的纤维与基体更容易发生反应,且界面层更容易生长.  相似文献   

8.
SiC纤维增强Ti基复合材料(SiCf/Ti)容易发生界面反应,从而影响其力学性能。开展界面反应和动力学的研究,对于SiCdTi复合材料的制备和服役具有指导意义。采用扫描电镜、透射电镜和X射线衍射分析了SICf/Ti-6Al—4V复合材料的界面反应及其动力学,发现SiC纤维的C涂层与Ti-6Al—4V反应形成粗晶粒的和细晶粒的TiC,长期高温热处理使得界面反应加剧,TiC层加厚,当C涂层完全消耗后,界面反应层中除了TiC外,还出现了Ti3SiC2。研究表明,界面反应层的加厚受元素扩散控制,服从抛物线规律,求出的动力学参数Q为268.8kJ/mol,k为0.0057m/s1/2。  相似文献   

9.
SCS-6 SiC/TiB2/Ti2AlNb复合材料界面反应及机理   总被引:1,自引:0,他引:1  
朱艳  杨延清  马志军  陈彦 《金属学报》2002,38(Z1):484-487
利用透射电镜对SCS-6 SiC/TiB2/Ti2AlNb复合材料的界面反应进行了观察,并运用量子化学计算理论及有关热力学模型,计算了SCS-6 SiC/TiB2/Ti2AlNb复合材料界面反应的Gibbs函数变值△rG,据此对实验结果进行了讨论与分析.研究表明,TiB2可有效地阻止元素扩散与反应,但在高温长时间热暴露后,TiB2层消耗殆尽形成TiB.SCS-6 SiC的C涂层与基体Ti2AlNb中元素反应形成不同的碳化物与硅化物.研究结果还表明,化学计量比的TiB2要比富B的TiB2更加稳定,因此作为界面障碍涂层更为有利.  相似文献   

10.
测定了经过900℃不同时间热处理的SiC/Ti-6Al-4V复合材料的拉伸强度,并采用全局载荷分配模型计算了复合材料的强度。发现长时间热处理后,复合材料强度的计算值与实测值吻合很好,但该模型对未经热处理的制备态试样的预测值偏高。扫描电镜和透射电镜微观分析表明,随着热处理时间的延长,SiC/Ti-6Al-4V复合材料的界面反应区增厚而SiC纤维的C涂层逐渐消耗,复合材料的界面结合强度逐渐增加但抗拉伸强度逐渐下降。界面反应形成的反应产物主要为TiC,在C涂层消耗完的区域还形成了Ti5Si3。界面反应是使复合材料力学性能变差的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号