首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of Mn partial substitution for Fe in TbFe10.5Mo1.5 on the structure and magnetic properties were investigated. TbFe10.5−xMnxMo1.5 samples (x = 1.5, 2.0, 3.0, 4.0, 5.0) were prepared by means of arc-melting and subsequent vacuum annealing. The structure and magnetic properties of TbFe10.5−xMnxMo1.5 compounds were investigated by X-ray powder diffraction and magnetic properties measurements. The following conclusions were obtained: all the TbFe10.5−xMnxMo1.5 compounds studied crystallize in the ThMn12-type structure; the unit-cell volume increases monotonically with increasing Mn concentration; a compensation temperature was observed in the magnetization-temperature curve of TbFe7.5Mn3Mo1.5 compounds. With increasing Mn concentration, the saturation magnetization at 4.4 K decreases to zero, and then increases again, the magnetic moments of the transition-metal sublattice of TbFe10.5−xMnxMo1.5 compounds decrease monotonically.  相似文献   

2.
The HfFe6Ge6-type RMn6Sn6−xXx′ solid solutions (R=Tb, Dy, X′=Ga, In; x≤1.4) have been studied by powder magnetization measurements. All the series are characterized by ferrimagnetic ordering and by a decrease in Curie temperatures with the substitution (ΔTcx≈−39 K for X′=Ga and ΔTcx≈−75 K for X′=In). The RMn6Sn6−xGax systems are characterized by a strong decrease in the spin reorientation temperature with substitution (ΔTtx≈−191 K and −78 K for R=Tb and Dy, respectively) while this transition almost does not change in systems containing indium. The coercive fields drastically decrease with the substitution in the TbMn6Sn6−xGax system while the substitution of In for Sn has a weaker effect. The coercive fields of the Dy compounds do not vary greatly with the substitution in both series. The behaviour of the TbMn6Sn6−xGax is compared with the evolutions observed in the TmMn6Sn6−xGax series. This comparison strongly suggests that the replacement of Sn by Ga changes the sign of the A02 crystal field parameter.  相似文献   

3.
The electrical conductivity (σ), Seebeck coefficient (S), and power factor (σS2) of perovskite-type LaFeO3, La1−xSrxFeO3 [0.1 ≤ x ≤ 0.4] and LaFe1−yNiyO3 [0.1 ≤ y ≤ 0.6] were investigated in the temperature range of 300–1100 K to explore their possibility as thermoelectric materials. The electrical conductivity of LaFeO3 showed semiconducting behavior, and its Seebeck coefficient changed from positive to negative around 650 K with increasing temperature. The electrical conductivity of LaFeO3 increased with the substitutions of Sr and Ni atoms, while its Seebeck coefficient decreased. The Seebeck coefficient of La1−xSrxFeO3 was positive, whereas that of LaFe1−yNiyO3 changed from positive to negative with increasing Ni content. The substitutions of Sr and Ni were effective in increasing the power factor of LaFeO3; 0.0053 × 10−4 Wm−1 K−2 for LaFeO3 (1050 K), 1.1 × 10−4 Wm−1 K−2 for La1−xSrxFeO3 (x = 0.1 at 1100 K) and 0.63 × 10−4 Wm−1 K−2 for LaFe1−yNiyO3 (y = 0.1 at 1100 K).  相似文献   

4.
The La1−xKxCo1−xNbxO3 system was performed by conventional solid state reaction technique using metal oxides. By DSC analysis, the activation energy of crystallization of the powders with x = 0.3 is 388.4 kJ/mol. The crystal structure of the compound reveals a transition from rhombohedral to cubic, and then to orthorhombic structure as the amount of the potassium niobate (KNbO3) increases. It is found that the structure of the samples with x < 0.3 is similar to that of lanthanum cobaltate (LaCoO3), while at the compositions with 0.7 ≥ x ≥ 0.3, the structure transforms to cubic. Finally, with x ≥ 0.7, the structures were similar to that of KNbO3. According to the results of selected-area-diffraction (SAD) patterns and X-ray diffraction (XRD) identifications, the lattice parameters were calculated. The direction of superlattice structure along [2 1 0] was found for x = 0.5 as identified from SAD patterns. The dielectric constants were measured with cubic structure. Dielectric constant (K) decreases with increasing x.  相似文献   

5.
Structure and magnetic and electrical properties of the polycrystalline compounds LaMn1−xRhxO3 (0 < x ≤ 1) have been investigated. The samples were characterized by X-ray diffraction and Rietveld refinement which confirmed the space group Pnma (No. 62) for all compositions at room temperature. A transformation from O′- to O-type orthorhombic structure is seen near x = 0.6 tending to make the phase unstable. The electrical conductivity measurement shows semiconducting property above room temperature with a rather low activation energy for Mn-rich compositions. Compounds in the region 0.1 ≤ x ≤ 0.9 show ferromagnetic property but the substitution of Rh3+ ion for Mn3+ ion suppresses the ferromagnetism that results in reducing the Curie temperature, TC.  相似文献   

6.
A new compound CePt2+xSb2−y (x = 0.125, y = 0.25) was synthesized by arc-melting of the elements. The chemical and structural characterizations were carried out at room temperature on as-cast samples using X-ray diffractometry, metallographic analysis and EDS-microanalysis. According to the results of X-ray single crystal diffraction this antimonide crystallizes in I4cm space group (no. 108), Z = 32, ρ = 12.19 Mg/m3, μ = 89.05 mm−1 (a = 12.5386(3) Å, c = 21.4692(6) Å (crystal I) and a = 12.5455(2) Å, c = 21.4791(5) Å (crystal II)). The structure and composition were confirmed by powder X-ray diffraction (a = 12.4901(2) Å, c = 21.3620(4) Å) and EDS-microanalysis respectively. Isotypic compounds were observed with La and Pr from X-ray powder diffraction of as-cast alloys at room temperature (a = 12.6266(4) Å, c = 21.4589(6) Å for LaPt2+xSb2−y and a = 12.5184(5) Å, c = 21.4178(7) Å for PrPt2+xSb2−y). The CePt2+xSb2−y structure is derived from CaBe2Ge2 (a = 2a0 − 2b0, b = 2a0 + 2b0, c = 2c0) and comprises a new atomic arrangement with both vacancy on 4(b) pyramidal site and substitution of antimony atoms (X) by platinum (B) in the B–XX–B layers (referring to the subcell structure) forming two B––1/2B1/2XX–3/4B and two X–BB–X layers per cell. The structure of CePt2+xSb2−y is compared with those reported before for URh1.6As1.9 and CeNi1.91As1.94.  相似文献   

7.
In this study we give evidence for the strong dependence of the compositional and magnetic properties on the synthesis conditions of polycrystalline Co2(Cr1−xFex)Al Heusler alloys (0 ≤ x ≤ 1) by comparing the properties of as-grown and annealed compounds. Strong chemical inhomogeneities are found at the micrometric level depending on the compound and the synthesis method. Moreover, we find that the Co content is homogeneous at the micrometric level in all the studied samples in sharp contrast with significant inhomogeneous distribution of (Fe/Cr) and Al at the micrometric level, especially for Cr-rich compounds (x ≤ 0.4). We have found that the magnetic properties (the Curie temperature and the saturation magnetization) are strongly depressed in the annealed compounds with respect to the corresponding as-grown compounds. For the as-grown compounds the saturation magnetization is close to the theoretically predicted one for x ≥ 0.7 whereas it is lower than the theoretically predicted one for x ≤ 0.4, which correlates with the observed chemical inhomogeneity.  相似文献   

8.
The effect of substituting Sr for Ba on the magneto-transport and magnetic properties of (La1/3Sm2/3)0.67Ba0.33MnO3 system, has been investigated. The samples, (La1/3Sm2/3)0.67Ba0.33−xSrxMnO3 (x = 0.0, 0.1, 0.2 and 0.33), synthesized by citrate gel route, crystallize in an orthorhombic structure (space group Pnma, no. 62). The unit cell volume decreases while the metal-insulator transition temperature (TMI) increases with increasing Sr content. The localization of charge carriers occurs at low temperatures and becomes more pronounced with decreasing Sr content which leads to an enhancement of resistivity. This could be understood by the variation of MnOMn bond-distance and angle. Reappearance of semiconducting behavior (dρ/dT < 0) is observed only in samples with x = 0 and x = 0.1 below certain temperature (T < TMI). These samples exhibit thermal irreversibility behavior for a field-cooled (FC) and zero-field-cooled (ZFC) magnetization data in a magnetic field of 100 Oe. This is ascribed to the competition between the superexchange and double exchange interactions. The change in physical properties has been correlated to chemical parameters such as ionic radii, tolerance factor, electronegativity and variation in MnOMn angle.  相似文献   

9.
The structural and magnetic properties of perovskite oxides La0.7Ca0.3−xKxMnO3 (0 ≤ x ≤ 0.15) have been investigated to explore the influence of the A-site cation size-disorder (σ2). The materials were prepared by the solid-state method and then characterized by X-ray diffraction (XRD). The XRD data have been analyzed by Rietveld refinement technique. For K doping concentration x ≤ 0.075, the samples crystallize in the orthorhombic structure, while for x ≥ 0.1, the structure becomes rhombohedral. The variation of the magnetization M as a function of the applied magnetic field μ0H reveals the presence of a structural distortion leading to a reduction of the magnetization at low μ0H values. When increasing μ0H, the structural distortion decreases and for a high applied magnetic field, the M (μ0H) curves saturate indicating the disappearance of the structural distortion. The influence of K doping concentration and the applied magnetic field on the magnetocaloric properties has been considered. A large magnetic-entropy change (|ΔSM|  5 J/kg K) is obtained in all samples at Curie temperatures between 270 and 280 K for an applied magnetic field of 3 T. These results show that these materials can be used as candidates for magnetic refrigerants near room temperature.  相似文献   

10.
The homogeneity range of U2Co17−xSix system with the hexagonal Th2Ni17-type crystal structure extends from x = 1 to 3.4. The variation of the magnetic properties within the homogeneity range was studied on single crystals. All the compounds are ferromagnetic, Ms and TC decrease monotonously with increasing Si content. The strongly modified magnetic anisotropy of U2Co17−xSix, as compared to isostructural Lu2Co17−xSix with the non-magnetic Lu, points to a magnetic state of U up to x = 3.0. The U contribution to K1 decreases with increasing Si content and vanishes at x = 3.4 that can be treated as a transition from magnetic to non-magnetic state of U. Spin reorientation was observed with varying temperature in compounds with x ≤ 3 due to a competition of the U and Co sublattices anisotropies which occurs as two second-order phase transitions of the “plane–cone” and the “cone–axis” type.  相似文献   

11.
Magnetic properties and crystal structure of the hydrides of ferromagnetic compounds HoFe11−xCoxTi (x = 1, 2, 4, 6, 7, 11) are investigated. The crystal structure was determined by X-ray diffraction (XRD) analysis and the magnetization was measured in applied magnetic fields up to 10 T and at temperatures ranging from 5 K to room temperature. Results show that the crystal structure of the hydrides is the same as for parent compounds but with a moderate unit cell increase. Other properties such as saturation magnetization are affected by H insertion within the lattice. The effect of hydrogenation on magnetic anisotropy energy leads to disappearance of the FOMPs observed in the parent compounds.  相似文献   

12.
We have studied influence of the Pt–Ni substitution on the crystal structure and magnetic behavior of the PrNixPt1−x compounds. Polycrystalline samples with x = 1, 0.9, 0.75, 0 were prepared and characterized by X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM). The analysis of XRPD data confirmed that the orthorhombic CrB-type structure owned by the parent binary compounds remains conserved through the entire series. The samples were subsequently investigated by specific heat (Cp), magnetization (M) and ac susceptibility measurements in the temperature range 2–350 K and in magnetic fields up to 9 T. All compounds were found to order ferromagnetically. The TC values monotonously increase with increasing Ni content. To inspect the crystal-field (CEF) effects and magnetocaloric properties specific-heat data were analyzed in detail and the magnetic contribution to the specific heat together with the magnetic entropy have been determined. The results of first principles electronic structure calculations of the PrNi and PrPt confirmed that besides the stable Pr magnetic moments due to localized 4f-electrons only a very small magnetic moments of at most 0.2μB is induced at the Ni (Pt) site due to the polarized 3d-electron states (5d-electron states) hybridizing with the Pr 5d-electron states, i.e. the Ni (Pt) moment plays only minor role in the total balance of the magnetic moments in these compounds.  相似文献   

13.
The effects of the combined substitution of Y and Ga on the crystallographic structure of Nd2−xYxFe17−yGay compounds with x = 0, 0.5, 1.0, 1.5 and y = 0, 1, 2, 3 have been investigated using X-ray and neutron powder diffractions. Rietveld refinements of the diffraction data indicate that all the samples crystallize in the rhombohedral Th2Zn17-type structure with only small amounts of alpha iron. It is found that the addition of Ga atoms lessens the decreasing rates of the a-axis and unit cell volume V on the Y content but almost does not affect the decreasing rates of the c-axis. However, the substitution of Y has a positive effect on the increasing rates of the a-axis and unit cell volume V on the Ga content but has a very slight effect on the increasing rate of the c-axis. The c/a ratio of Nd2−xYxFe17−yGay as a function of Ga content exhibits a different increase for different Y content owe to the combined effects of Y and Ga on the crystallographic structure. The substitution of Y is found to have little effect on the site occupancy of Ga in Nd2−xYxFe17−yGay. The combined effects of Y and Ga on the bond lengths and ASBL of Nd2−xYxFe17−yGay indicate that more bonds detrimental to ferromagnetic exchange can be modulated into the desirable ferromagnetic exchange distance range through suitable combined substitution, which provides a valuable way to improve the magnetic properties of rare earth-transition intermetallic compounds.  相似文献   

14.
The effect of partial substitution of Ni by Cr in CeNi5 intermetallic compound has been studied by pressure–composition isotherm measurements for different temperatures. The samples were prepared of high purity materials using the standard arc melting technique in argon atmosphere. The structure and the elemental composition of different alloys have been investigated by means of XRD, SEM and EDX techniques. The unit cell volume of the alloy was found to increase with increasing Cr content. In order to calculate the hydrogen storage capacity pressure–composition isotherm has been investigated for CeNi5−xCrx (x = 1, 2) alloys in the temperature and pressure ranges of 293 ≤ T ≤ 333 K and 0.5 ≤ P ≤ 35 bar, respectively. The P–C–T isotherm for different alloys clearly shows the presence of three regions ,  + β and β. The enthalpy and entropy for the systems has also been calculated using Van’t Hoff plot. The variation of enthalpy and entropy with hydrogen content has also been studied.  相似文献   

15.
To investigate the effect of x on c-lattice parameter, the activation energy, and the magnetic power constant of activation energy, the nominal composition of Y1−xYbx/2Gdx/2Ba2Cu3O7−y superconducting samples for x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 were prepared by solid-state reaction technique. c-Lattice parameters of the samples were calculated using XRD data. From the resistivity curves which were obtained under 11 different magnetic fields from 0 up to 5 T in the temperature range from 70 to 100 K steps by 0.25 K in zero field cooling regime, the activation energies of the samples were determined using Arrhenius activation energy law. The magnetic power constants of activation energy of the samples were calculated from the slopes of the plots ln U versus ln H. The results showed that the value of c-lattice parameters of samples x = 0 (Y123), and x = 1.0 (YbGd123) are in good agreement with the reported works. It was found that c-lattice parameter decreased with the increasing the content x except samples of x = 0.4 and 1.0. It was thought that the origin of the separation from the linearity comes from the lack of Y in nominal composition for x = 1.0. As for the sample x = 0.4, it was thought to be due to the fact that Y, Yb and Gd atoms affect the superconductivity properties dominantly. On the other hand, there is a similarity among U(0 T), U(1 T), its magnetic power constant and the c-lattice parameter with increasing content x. The desired activation energy and its magnetic field dependency constant can be controlled with x and then this can be useful for the superconducting applications.  相似文献   

16.
The structural properties of the compounds in the tin-rich part of the dysprosium–tin system have been studied by X-ray powder diffraction. The crystal structures of six compounds DySn2+x (0 < x < 1) have been characterized. There are four compounds with known structural types: DySn2 with the ZrSi2 structure, Dy3Sn7 with the Gd3Sn7 structure, Dy2Sn5 with the Er2Ge5 structure, DySn3 with the DyGe3 structure and two compounds characterized by new body-centred orthorhombic types (Immm): Dy5Sn11 (a = 4.411 Å, b = 42.50 Å and c = 4.328 Å) and Dy5Sn13 (a = 4.341 Å, b = 48.05 Å and c = 4.405 Å) which result from various insertions of AuCu3 and Po slabs into the ZrSi2 structure. The relationships and structural evolution are discussed.  相似文献   

17.
A series of LaxCeyO1 − x − y films (x = 0–0.54, y = 0–0.58) with thickness of 35–45 nm was deposited by unbalanced magnetron sputtering. High-resolution transmission electron microscope observation shows that La0.24Ce0.34O0.42 film has polycrystalline structure. La2O3 and CeO2 are formed within the LaxCeyO1 − x − y films confirmed by the X-ray diffraction and X-ray photoelectron microscopy. The friction coefficient and residual compressive stress of five kinds of three-element compound films exhibit symmetric distribution with the relative equilibrium of La and Ce atomic concentration within the films. The critical load of all deposited films is between 28 and 33 mN. The friction coefficient of two kinds of rare earth complex oxide films is in the range of 0.08–0.09, which is lower than that of only one kind of rare earth oxide films, and the friction mechanism is discussed.  相似文献   

18.
Nanocrystalline (Nd,Dy)16(Fe,Co)76−xTixB8 magnets were prepared by mechanical alloying and respective heat treatment at 973–1073 K/30–60 min. An addition of 0.5 at.% of Ti results in increase of coercivity from 796 to 1115 kA/m. Partial substitution of Nd by Dy results in an additional increase of coercivity up to 1234 kA/m. The highest corrosion resistance have magnets with 0.5–0.75 at.% of Ti. Beside the Ti, the Co and Dy content significantly improve the corrosion resistance, too. It was found, that for Ti content smaller than x ≤ 1, the (Nd,Dy)16(Fe,Co)76−xTixB8 powders are single phase. For higher Ti contents (x > 1) the mechanically alloyed powders heat treated at 973 K are no more single phase, and the coercivity as well as corrosion resistance decreases due to the presence of an amorphous phase and -Fe. A heat treatment at a higher temperature (1073 K/30 min) or at 973 K for longer time (1 h) results in the full recrystallisation of the powders. The obtained homogenized structure results in higher corrosion resistance.  相似文献   

19.
The a.c. susceptibility and high field magnetization on TbRh2−xPdxPdxSi2 and TbRu2−xPdxSi2 compounds were investigated up to 140 kOe. The (T,x) magnetic phase diagrams were determined. For both systems, an increase in the Pd content causes a decrease in the Néel temperature and changes the magnetization curves.  相似文献   

20.
Hexagonal ilmenite-type (Zn1−xNix)TiO3 (x = 0, 0.85–1.0) ceramic powders were successfully synthesized by a sol–gel route with low temperature (800 °C) sintering, which was modified by using the two-step heat treatment so as to obtain pure products. The thermal stability of the hexagonal (Zn,Ni)TiO3 was enhanced with the increasing amount of nickel addition. FE-SEM observations demonstrated that the average crystallite sizes of (Zn1−xNix)TiO3 remarkably decreased from more than 200 nm to less than 100 nm with the increasing solubility x. The dielectric properties of (Zn1−xNix)TiO3 were measured at different frequencies and the results showed that there existed maximum values both for the dielectric constants and the loss tangents at x = 0.85.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号