首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
低活化铁素体/马氏体(reduced activation ferritic/martensitic,RAFM)钢搅拌摩擦焊(friction stir welding,FSW)接头中的高温δ铁素体是影响其冲击韧性的主要因素. 通过喷雾冷却,降低焊接峰值温度并对接头进行快速降温,从而达到抑制δ铁素体生成的目的. 采用Fluent流体软件对RAFM钢FSW在不同喷雾冷却工况下的温度场进行模拟研究,综合模拟结果进行试验验证. 结果表明,液氮辅助FSW(FSW + LN2)可有效降低焊接接头的峰值温度并加速焊后的降温速率. FSW + LN2焊接接头冲击韧性由常规FSW接头的冲击吸收能量23 J提升至33 J,达到与母材等韧匹配,硬度变化趋势与常规FSW接头基本一致,焊接接头硬度远高于母材.  相似文献   

2.
Friction stir welding (FSW) of dissimilar stainless steels, low nickel austenitic stainless steel and 409M ferritic stainless steel, is experimentally investigated. Process responses during FSW and the microstructures of the resultant dissimilar joints are evaluated. Material flow in the stir zone is investigated in detail by elemental mapping. Elemental mapping of the dissimilar joints clearly indicates that the material flow pattern during FSW depends on the process parameter combination. Dynamic recrystallization and recovery are also observed in the dissimilar joints. Among the two different stainless steels selected in the present study, the ferritic stainless steels shows more severe dynamic recrystallization, resulting in a very fine microstructure, probably due to the higher stacking fault energy.  相似文献   

3.
Material flow and phase transformation were studied at the interface of dissimilar joint between Al 6013 and Mg, produced by stir friction welding (FSW) experiments. Defect-free weld was obtained when aluminum and magnesium were placed in the advancing side and retreating side respectively and the tool was placed 1 mm off the weld centerline into the aluminum side. In order to understand the material flow during FSW, steel shots were implanted as indexes into the welding path. After welding, using X-ray images, secondary positions of the steel shots were evaluated. It was revealed that steel shots implanted in advancing side were penetrated from the advancing side into the retreating side, whereas the shots implanted in the retreating side remained in the retreating side, without penetrating into the advancing side. The welded specimens were also heat treated. The effects of heat treatment on the mechanical properties of the welds and the formation of new intermetallic layers were investigated. Two intermetallic compounds, Al3Mg2 and Al12Mg17, were formed sequentially at Al6013/Mg interface.  相似文献   

4.
ODS钢搅拌摩擦焊接头的微观组织及其高温力学性能   总被引:2,自引:2,他引:0       下载免费PDF全文
张静  韩文妥  常永勤  万发荣 《焊接学报》2015,36(10):9-11,40
采用搅拌摩擦焊(friction stir welding,FSW)技术对氧化物弥散强化(oxide dispersion strengthen,ODS)铁素体钢进行了焊接,并对焊接工艺进行了优化. 当转速为150 r/min,焊接速度为30 mm/min时可以获得无焊接缺陷的ODS钢焊接接头. 结果表明,采用FSW焊接的ODS钢接头的微观组织出现明显的洋葱环结构,搅拌区为等轴再结晶晶粒,前进侧热机影响区表现出明显的塑性流动的特征,热影响区的晶粒较母材也发生了明显改变. 接头的高温拉伸性能偏低,但经过温度1 150 ℃,时间1 h的热处理后,其高温拉伸性能得到大幅提高,与母材拉伸性能接近.  相似文献   

5.
A three-dimensional thermomechanical simulation of friction stir welding (FSW) processes is carried out for ferritic stainless steel by utilizing an Eulerian finite volume method under the steady state condition, and the simulation result is compared directly with both the measured temperature histories during FSW and the microstructural changes after FSW. Based on a viscoplastic self-consistent approach for polycrystal, the texture development in the FSWed material is determined from the velocity gradients along the streamlines in the material flow field. The simulation results show that the heat is generated mainly near the interface between the tool and the workpiece, and that the viscosity changes drastically in the vicinity of the boundary between the stir zone and the thermomechanically affected zone. From the predicted streamlines, it can be indicated that the strong material flow mainly develops on the retreating side of the tool. Also, the simulation results show that the shear deformation texture is significantly developed in the FSWed region. The measured temperatures and microstructural characteristics agree fairly well with the predicted data.  相似文献   

6.
Ferritic stainless steel SUS430 sheets were friction stir welded by using a Ni-base dual two-phase intermetallic alloy tool. After friction stir welding (FSW), the SUS430 work and the tools were evaluated in terms of microstructure and mechanical properties. The tensile specimens cut from the welded joints fractured in the base metal portion and their fracture strength was equal to that of the base metal. The stir zone comprised of recrystallized fine microstructure was observed, and also the thermo-mechanically affected zone was observed in an advanced side. Hardness in the upper one-third layer of the welded cross section was higher than the base metal. The admixture matter from work to tool surface occurred whereas that from tool to work surface did not take place in the scanning electron microscopy-EPMA resolution level. The amount of wear of tool was negligibly small, suggesting that the Ni-base dual two-phase intermetallic alloy is promising as a new type of FSW tool used for high melting materials such as steel.  相似文献   

7.
Abstract

A friction stir welding (FSW) tool with high strength and high wear resistance at elevated temperature is needed to perform FSW of high temperature materials. The purpose of this study is to develop a welding tool suited for FSW of high temperature materials. It has been clarified that Ir is little oxidised at elevated temperatures and that the addition of Re within the solubility limit to Ir increases the recrystallisation temperature, the high temperature strength and the high temperature hardness of the Ir alloy. SUS304 stainless steel was successfully friction stir welded by an Ir–10?at‐%Re welding tool without significant wear.  相似文献   

8.
The poor weldability of the AA2024 aluminum alloy limits its use in industrial applications. Because friction stir welding (FSW) is a non-fusion welding process, it seems to be a promising solution for welding this alloy. In the current study, FSW was applied to butt weld AA2024-T3 aluminum alloy plates. Creep tests were conducted at 250 and at 315 °C on both the parent material and the friction stir welded specimens. The microstructures of the welded and non-welded AA2024-T3 specimens before and after the creep tests were studied and compared. A comprehensive transmission electron microscopy study together with a high-resolution scanning electron microscopy study and energy-dispersive x-ray spectroscopy analysis was conducted to investigate the microstructure stability. The parent material seems to contain two kinds of Cu-rich precipitates—coarse precipitates of a few microns each and uniformly dispersed fine nanosized precipitates. Unlike the parent material, the crept specimens were found to contain the two kinds of precipitates mentioned above together with platelet-like precipitates. In addition, extensive decoration of the grain boundaries with precipitates was clearly observed in the crept specimens. Controlled aging experiments for up to 280 h at the relevant temperatures were conducted on both the parent material and the welded specimens in order to isolate the contribution of exposure to high temperatures to the microstructure changes. TEM study showed the development of dislocation networks into a cellular dislocation structure in the case of the parent metal. Changes in the dislocation structure as a function of the creep strain and the FSW process were recorded. A detailed creep data analysis was conducted, taking into account the instability of the microstructure.  相似文献   

9.
搅拌摩擦焊焊缝材料塑性流变研究概述   总被引:1,自引:0,他引:1  
搅拌摩擦焊焊缝金属塑性流变直接关系到焊缝组织形成,是决定焊缝质量的关键。介绍了目前搅拌摩擦焊焊缝金属的塑性流变研究现状,从试验和计算机模拟两个方面分别加以介绍。  相似文献   

10.
根据搅拌摩擦焊接过程材料热物参数温变特性,基于库伦摩擦做功和经典Archard磨损理论,分别建立了6061铝合金薄板搅拌摩擦焊热源修正模型和搅拌工具H13模具钢磨损模型,并嵌入到Deform有限元仿真软件中,模拟了有无考虑温变下搅拌工具的磨损量分布形貌和磨损规律. 结果表明,两种情况下搅拌工具磨损量分布形貌基本一致,温变效应使得搅拌工具和接头材料间力热作用加剧,在焊接过程中,搅拌工具的磨损系数对温变效应的敏感性要大于材料硬度的变化. 考虑温变效应的搅拌工具磨损模型能更加反映其磨损变化规律,具有较高的磨损预测精度.  相似文献   

11.
分别在空气和强制冷却条件下对TC4钛合金板进行了搅拌摩擦焊接(Friction stir welding,FSW),对比研究了焊接接头的微观组织和力学性能。结果表明,FSW接头分为搅拌区、热机械影响区和母材区。母材区为热轧退火后的初生α和β双相组织。空气条件下焊接,搅拌区为α+β片层结构,组织转变主要为β相转变为片层α+β两相,热机械影响区为等轴晶α和α+β片层的双态组织,组织转变受动态再结晶和相变共同作用。强制冷却条件下焊接,搅拌区为针状马氏体,组织转变主要为马氏体相变。与空气条件下接头相比,强制冷却条件下的FSW接头显微硬度明显提高,但抗拉强度略微降低。  相似文献   

12.
搅拌摩擦焊中焊缝材料的流动对焊件性能有很大影响,洋葱圆环是搅拌摩擦焊焊焊核区中材料流动的集中体现,文中对5mm厚的1060、3003铝合金板材进行了搅拌摩擦焊连接,通过对其焊核区腐蚀后的形貌观察分析研究了不同工艺参数下材料的流动形态,结果表明,工艺参数对搅拌摩擦焊焊核区洋葱圆环的形成有很大影响,采用较高的搅拌头转速和合适的焊接速度可获得稳定,质量良好的搅拌摩擦焊接头。  相似文献   

13.
铝合金搅拌摩擦与MIG焊接接头疲劳性能对比试验   总被引:4,自引:1,他引:4       下载免费PDF全文
根据疲劳S-N曲线试验结果,对5A06铝合金搅拌摩擦焊(FSW)和MIG焊接接头的疲劳性能进行了初步比较,分析讨论了搅拌摩擦焊过程中所产生的焊接缺陷对其疲劳性能的影响.结果表明,在焊态下由于焊接接头几何形状等的影响,FSW的疲劳强度明显高于MIG焊接接头;对FSW焊缝根部的"吻接"缺陷(kissing-bonds)是降低FSW焊接接头疲劳寿命的主要因素,旋转搅拌工具在焊缝表面形成的多余飞边将对疲劳行为产生明显影响.  相似文献   

14.
Friction stir welding (FSW) is a solid-state welding process which is capable of joining materials which are relatively difficult to be welded by fusion welding process. Further, this process is highly energy-efficient and environmental-friendly as compared to the fusion welding. Despite several advantages of FSW over fusion welding, the thermal cycles involved in FSW cause softening in joints generally in heat-treatable aluminum alloys (AAs) due to the dissolution or coarsening of the strengthening precipitates leading to decrease in mechanical properties. Underwater friction stir welding (UFSW) can be a process of choice to overcome these limitations. This process is suitable for alloys that are sensitive to heating during the welding and is widely used for heat-treatable AAs. The purpose of this article is to provide comprehensive literature review on current status and development of UFSW and its importance in comparison to FSW with an aim to discuss and summarize different aspects of UFSW. Specific attention is given to basic principle including material flow, temperature generation, process parameters, microstructure and mechanical properties. From the review, it is concluded that UFSW is an improved method compared with FSW for improving joint strength. Academicians, researchers and practitioners would be benefitted from this article as it compiles significantly important knowledge pertaining to UFSW.  相似文献   

15.
Workpiece material flow and stirring/mixing during the friction stir welding (FSW) process are investigated computationally. Within the numerical model of the FSW process, the FSW tool is treated as a Lagrangian component while the workpiece material is treated as an Eulerian component. The employed coupled Eulerian/Lagrangian computational analysis of the welding process was of a two-way thermo-mechanical character (i.e., frictional-sliding/plastic-work dissipation is taken to act as a heat source in the thermal-energy balance equation) while temperature is allowed to affect mechanical aspects of the model through temperature-dependent material properties. The workpiece material (AA5059, solid-solution strengthened and strain-hardened aluminum alloy) is represented using a modified version of the classical Johnson-Cook model (within which the strain-hardening term is augmented to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13 tool steel) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process parameters are investigated (e.g., weld pitch, tool tilt-angle, and the tool pin-size). The results pertaining to the material flow during FSW are compared with their experimental counterparts. It is found that, for the most part, experimentally observed material-flow characteristics are reproduced within the current FSW-process model.  相似文献   

16.
The speed and feed effects of the friction stir welding (FSW) process on the surface texture along the top of a butt welded nugget were studied. The tests were conducted using fine grain (0.8-2 μm) titanium alloy 6Al-4V with a nominal thickness of 2.5 mm. It was shown that the pin tool marks along the top surface of the weld can be highly detrimental to both the superplastic forming (SPF) characteristics and the fatigue performance of welded panels. Removing the marks by machining the top surface after FSW was found to eliminate the predominant tearing of the weld during SPF and most of the fatigue life of across the weld was also restored. Through additional development of the FSW process parameters, the butt welded nugget was made to have equivalent SPF characteristics as the parent sheet material. By using a water-cooled pin tool and other cooling techniques, it is believed that the weld zone can be kept below the beta transus temperature during FSW, which enables the formation of a grain structure that is uniquely conducive to superplastic behavior, when compared to conventional fusion welding processes.  相似文献   

17.
搅拌摩擦焊(FSW)是近几年发展较快的新型摩擦焊接技术.国内外研究较多的是铝合金及异种铝合金的搅拌摩擦焊接,但对铝/铜异种搅拌摩擦焊接的研究尚不多见.在此通过大量试验,分别在900-1500 rpm、20-50mm/min范围内调整搅拌旋转速度和焊接速度,优化焊缝的成形质量.结果表明,优化工艺参数可以实现铝/铜异种金属...  相似文献   

18.
Effect of Preheating in Hybrid Friction Stir Welding of Aluminum Alloy   总被引:3,自引:0,他引:3  
The controlled energy input into the system by introducing an extra heat source to enhance the material flow along with reduction of the plunging force remains a potential area of considerate for the development of hybrid friction stir welding (FSW) process. Hence, the effect of preheating on the weld joint properties is evaluated using plasma-assisted friction stir welding (P-FSW) process for joining aluminum alloy. A comparative study of mechanical and macro-microstructural characterizations of weld joint by FSW and P-FSW has been performed. Transverse tensile strength of weld joint is approximately 95% of base metal produced by P-FSW and is 8% more than conventional FSW welds. The effect of preheating enhances material flow and dissolution of fine oxide particles by plasma arc results in increase of strength and marginal modification of deformation behavior. The preheating brings uniformly distributed hardness in weld zone and the magnitude is higher in the advancing side with overall increase in average hardness value. Grain sizes are much finer due to the pinning effect of Al2O3 particles that retarded grain growth following recrystallization during P-FSW and thus led to more pronounced reduction in grain size and relatively brittle fracture during tensile loading of welded joint. Overall, the influence of preheating acts quite homogeneously throughout the structure as compared to conventional FSW. However, the results reveal that the development of P-FSW is still in initial stage and needs to improve in various aspects.  相似文献   

19.
作为影响搅拌摩擦焊(FSW)过程中塑性材料上下流动的重要因素,搅拌针螺纹形貌同样对搅拌摩擦搭接焊(FSLW)的材料流动和力学性能有着重要影响.为研究半螺纹搅拌针对FSLW接头显微组织和力学性能的影响,文中将全螺纹搅拌针和半螺纹搅拌针用于包铝2024铝合金FSLW试验,并对不同搅拌针作用下的FSLW接头的横截面形貌、剪切拉伸载荷、断裂位置等方面进行分析对比.结果表明,半螺纹搅拌针会使钩状缺陷向下弯曲,从而使FSLW接头具有较大的有效板材厚度以及搭接宽度.断裂模式同为剪切断裂,但半螺纹搅拌针作用下的FSLW接头拥有更大的拉断载荷.  相似文献   

20.
Friction stir welding of AZ31 magnesium alloy   总被引:3,自引:0,他引:3  
Friction stir welding (FSW) is an new solid-phase joining technology which has more advantages over fusion welding methods in welding of aluminum and other non-ferrous metals. The effects of welding parameters on mechanical properties and microstructure during friction stir welding of AZ31 magnesium alloy were studied in this paper. Microstructures and mechanical properties of the joints were investigated by means of optical microscopy, scanning electric microscopy ( SEM ) , micro-hardness analysis, and tensile test. Experimental results show that the magnesium alloy can be successfully welded by FSW method, and the ultimate tensile strength (UTS) of FSW joint reaches up to 90 percent of base metal. The microstructures of welded joints exhibit the variation from dynamically recrystallized fine grains to greatly deformed grains. Hardness in nugget zone was found lower than the base metal but not too obvious.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号