首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以新型阻燃钛合金Ti14(α+Ti2Cu)为对象,研究了合金在不同温度半固态锻造过程中的偏析和偏聚现象及由此导致的变形机制的变化。结果表明,半固态温度影响液相含量和分布,随着温度的升高液相在晶界由不连续分布转变为连续分布析出,并最终形成了网状结构分布。锻造过程中由于液相和应力的共同作用出现了宏观偏析现象,液相在压力作用下的流动在晶界处产生了宏观液相/固相分离现象,靠近试样中心固相离子集中;这种现象导致了锻造过程中变形机制的变化,中心区仍旧是固相粒子的塑性变形为主变形机制,靠近试样外边缘主变形机制转变为固相粒子的相对滑移,通过唯象模型对其过程进行讨论。  相似文献   

2.
通过室温和高温拉伸性能测试,对比研究了Ti14合金经常规锻造(950℃)和半固态锻造(1000℃和1050℃)后试样在不同温度区间的宏观力学行为,分析了微观组织演变规律、断口微观形貌及断裂特征。结果表明:合金经半固态锻造后表现出高强度、低塑性的力学特征,随着半固态锻造温度的升高,合金力学性能下降。半固态锻造过程中组织的变化是引起力学性能差异的主要原因,而组织演变的主要特征是Ti2Cu析出相形态和分布的变化。随着半固态温度的升高,更多的液相在晶界析出,并在凝固过程中析出大量板条状Ti2Cu相,最终在晶界上形成偏析带组织。这种带状组织在拉伸过程中引发了解离断裂,导致了低塑性。此外,通过再结晶退火可以有效地细化半固态组织,改善强度性能。  相似文献   

3.
研究了不同半固态加工变形温度下Ti14合金组织的演变规律,探讨了变形机制.结果表明:温度影响了液相的析出,随着温度的升高,液相形成量增加,并集中在晶界处,使得晶界宽化,由不连续转变为连续分布;由于晶界液相的增加,产生了润滑作用,使得晶界的摩擦力减小,滑移易于开动,加工变形机制由单一的固相塑变转变为以晶界滑移为主伴随少量固相塑变.  相似文献   

4.
采用热模拟系统研究了半固态变形温度,应变速率和变形量对Ti14合金压缩行为和组织演变的影响。结果表明:温度和应变对Ti14合金半固态峰值应力影响较大,峰值应力随着温度的增加和应变速率的减小而降低。分析认为:半固态变形中,应变速率的变化会影响产生压缩变形所需的响应时间,而液相的含量受控于变形温度,随着变形温度的升高,组织中出现了网状晶界结构,使得变形机制由固相粒子的塑性变形转变为固液混合流动。此外,变形量对合金半固态变形的应力-应变影响较小,可以认为是液相的润滑作用和协调变形机制缓解了晶粒间的压缩应力和摩擦力,使得应力-应变变化不明显。  相似文献   

5.
采用热模拟系统研究了半固态变形温度,应变速率和变形量对Ti14合金压缩行为和组织演变的影响。结果表明:温度和应变对Ti14合金半固态峰值应力影响较大,峰值应力随着温度的增加和应变速率的减小而降低。分析认为:半固态变形中,应变速率的变化会影响产生压缩变形所需的响应时间,而液相的含量受控于变形温度,随着变形温度的升高,组织中出现了网状晶界结构,使得变形机制由固相粒子的塑性变形转变为固液混合流动。此外,变形量对合金半固态变形的应力-应变影响较小,可以认为是液相的润滑作用和协调变形机制缓解了晶粒间的压缩应力和摩擦力,使得应力-应变变化不明显。  相似文献   

6.
Ti14合金半固态变形组织及力学性能   总被引:1,自引:0,他引:1  
以新型阻燃Ti14合金(α+Ti2Cu)为研究对象,分别进行常规固态锻造(950 ℃)和半固态锻造(1000 ℃),对比研究合金半固态变形的组织和拉伸性能,并讨论可能引发组织和拉伸性能变化的原因.结果表明:半固态锻造过程未发生动态再结晶,使得室温组织晶粒粗大,液相Ti2Cu在压力作用下沿晶界分布,形成了偏析,粗化了晶界,改变了晶界的结构;晶界结构的变化诱发了晶界的硬化效应,使得室温拉伸的强度升高,塑性降低.  相似文献   

7.
通过镦锻试验和模锻实验研究了Ti-Cu系合金半固态锻造行为,并对锻材进行了拉伸试验,讨论了Cu含量对半固态可锻性及力学性能的影响。结果表明:1000 °C至1150°C半固态锻造较常规锻造具有较小的顶锻压力;其中,1000 °C至1050°C间半固态锻造的Ti-Cu系合金均表现出较好的可锻性,在75%的锻造变形量下无明显缺陷。分析认为,Ti-Cu系列合金中含有较多的低熔点Ti2Cu相,随着半固态温度升高或Cu含量的增加,材料中的液相含量增加,增加的液相含量对变形起到润滑作用,减少了固相变形引起的应力集中,有效的降低了变形抗力,改善了成形性。力学性能研究表明:半固态锻造Ti-Cu系合金较常规锻造合金强度升高,塑性降低。随着Cu含量的升高,合金的强度明显提升,塑性降低。分析认为:力学性能的变化主要是由于Ti2Cu相析出含量、形态和分布相关,随着Cu含量和半固态温度的升高,更多Ti2Cu相在晶内和晶界析出,引起析出强化作用,同时,晶界析出的针状Ti2Cu相形成了偏析带,降低了合金塑形。  相似文献   

8.
以新型阻燃合金Ti14合金(α+Ti2Cu)为对象,研究了Ti合金在固态和半固态变形的组织演变过程,分析了温度和变形量对合金晶粒形态和晶界特征的影响,结果表明:半固态条件下未发生动态再结晶,使得晶粒粗大,温度影响了液相的析出,随着温度的升高,液相析出量增加,并集中在晶界处,使得晶界宽化,由不连续转变为连续分布;变形量改变了晶界的界面能,促使晶界发生迁移和转动,导致弯曲的晶界向其曲率中心方向移动,三叉晶的交角向120°趋近。  相似文献   

9.
采用热模拟系统研究半固态变形参数对合金微观组织演变和元素分布的影响,并讨论变形过程中的Ti2Cu析出行为。结果表明:微观组织,特别是Ti2Cu析出过程受变形参数影响较大;温度的增加,应变速率和变形量的降低将促进Ti2Cu在晶界的偏析,最终形成了网状晶界结构。分析认为:半固态晶界的析出过程主要受控于包晶反应,升温或降低其他变形参数将有利于液相在晶界的析出,形成晶界Cu元素富集区。液相的偏析和Cu元素的富集增加了该区域的包晶反应,最终在冷却过程中形成了粗大的网状晶界结构。  相似文献   

10.
不同半固态加工变形量的Ti14合金的微观组织和晶界特征   总被引:1,自引:1,他引:0  
研究了Ti14合金半固态加工变形过程中合金组织的演变规律及晶界特征,探讨了不同变形量下晶粒长大的机制及晶界变化规律.结果表明:加工变形过程改变了液相的分布,使得液相沿晶界向试样表面流动;当变形量在45%~60%时,宏观组织粗大,晶界清晰,晶粒以Ostwald熟化机制长大;当变形量超过75%后,晶界细化并出现不连续晶界,晶粒以合并长大机制为主,遵循位向择优原则;变形过程中改变了晶界的界面能,促使晶界发生迁移和转动,导致弯曲的晶界向其曲率中心方向移动,三叉晶的交角向120°趋近.  相似文献   

11.
Ti14合金半固态变形的晶界偏析行为   总被引:1,自引:0,他引:1  
以新型阻燃钛合金Ti14(α+Ti2Cu)为对象,研究了合金在半固态条件下的晶界偏析行为.结果表明,Ti14半固态变形使得Cu元素在晶界偏聚,冷却后以Ti2Cu相偏析于晶界,偏聚和偏析过程与半固态变形温度具有较大的相关性;同时,提出了Ti2Cu相形核和析出长大动力学模式,并用非经典形核长大理论进行了解释.  相似文献   

12.
利用Gleeble 1500热/力模拟机对Ti14合金进行了半固态压缩变形试验,研究了该合金在应变速率为5×10-2 s-1和5×10-1 s-1,变形温度为1273~1423 K条件下的流变应力变化规律,分析了该合金半固态下应力松弛发生的条件和原因,并讨论了温度、应变速率和变形机制之间的耦合关系.结果表明:温度和应变速率对流变应力有显著的影响,流变应力随着变形温度的升高和应变速率的降低而降低,宏观应力松弛发生在固相含量区间为0.95~0.98,主要是因为液相的增加减少了晶粒间的“固相桥”作用.由于液相在变形中的渗漏,Ti14合金在1273~1423 K半固态变形的应变速率试验值远远小于Iwasaki润滑流动机制(固液混合变形机制)所需的理论值,说明在所测试的半固态区间内合金仍以固相粒子变形为主,固液混合变形为协调机制.  相似文献   

13.
利用Gleeble1500热/力模拟机对Ti14合金进行了半固态压缩变形试验,研究了该合金在应变速率为5×10-2s-1和5×10-1s-1,变形温度为1273~1423K条件下的流变应力变化规律,分析了该合金半固态下应力松弛发生的条件和原因,并讨论了温度、应变速率和变形机制之间的耦合关系。结果表明:温度和应变速率对流变应力有显著的影响,流变应力随着变形温度的升高和应变速率的降低而降低,宏观应力松弛发生在固相含量区间为0.95~0.98,主要是因为液相的增加减少了晶粒间的"固相桥"作用。由于液相在变形中的渗漏,Ti14合金在1273~1423K半固态变形的应变速率试验值远远小于Iwasaki润滑流动机制(固液混合变形机制)所需的理论值,说明在所测试的半固态区间内合金仍以固相粒子变形为主,固液混合变形为协调机制。  相似文献   

14.
通过镦锻试验和模锻实验研究了Ti-Cu系合金半固态锻造行为,并对锻材进行了拉伸试验,讨论了Cu含量对半固态可锻性及力学性能的影响。结果表明:1000°C至1150°C半固态锻造较常规锻造具有较小的顶锻压力;其中,1000°C至1050°C间半固态锻造的Ti-Cu系合金均表现出较好的可锻性,在75%的锻造变形量下无明显缺陷。分析认为,Ti-Cu系列合金中含有较多的低熔点Ti_2Cu相,随着半固态温度升高或Cu含量的增加,材料中的液相含量增加,增加的液相含量对变形起到润滑作用,减少了固相变形引起的应力集中,有效地降低了变形抗力,改善了成形性。力学性能研究表明:半固态锻造Ti-Cu系合金较常规锻造合金强度升高,塑性降低。随着Cu含量的升高,合金的强度明显提升,塑性降低。分析认为:力学性能的变化主要是由于Ti_2Cu相析出含量、形态和分布相关,随着Cu含量和半固态温度的升高,更多Ti_2Cu相在晶内和晶界析出,引起析出强化作用,同时,晶界析出的针状Ti_2Cu相形成了偏析带,降低了合金塑形。  相似文献   

15.
通过DSC404F3差式扫描量热法(DSC)研究了9Cr18马氏体不锈钢的固相线温度和液相线温度,通过对Thermo-Calc热力学模型进行分析,研究了在加热过程中材料的组织变化。在Thermecmastor-Z热模拟试验机上对热轧态和半固态坯料9Cr18不锈钢进行了触变压缩实验,根据所得结果绘制了应力-应变曲线。研究了两种9Cr18马氏体不锈钢在1 300℃,变形速率1 s-1,压缩变形率20%、40%和60%条件下的组织。结果表明,9Cr18马氏体不锈钢的固相线温度为1 279℃,液相线温度为1 413℃。热轧态原料液相大致沿原带状碳化物方向析出,容易导致液相在局部区域聚集阻塞,这种呈带状分布的液相不利于流动通道的畅通;半固态坯料液相在固相颗粒间流动,液相能够相互三维贯通,不会导致偏析等问题,保证了试样宏观形貌完整,只有少部分裂纹。  相似文献   

16.
采用Gleeble 3500热模拟试验机,分别对铸态和SIMA法制备的半固态5083铝合金压缩变形行为进行了研究,并结合压缩后的宏观形貌和显微组织对液相的流动规律进行了分析。结果表明,变形温度和应变速率是影响5083铝合金半固态坯料热压缩变形的两个重要参数;在半固态温度区间压缩变形时,铸态坯料整体应力水平明显高于SIMA法制备的半固态坯料;而在固态温度区间内高温压缩变形时,二者流变应力曲线特征相似,半固态坯料没有明显优势;两种不同状态5083铝合金固液两相区压缩变形时,存在3个典型变形区域,半固态组织中液相均匀分布于晶粒晶界处,而铸态组织中液相分布位置极不均匀,半固态5083铝合金压缩变形后试样的致密度和均匀性优于铸态材料。  相似文献   

17.
采用"冷轧-部分重熔"技术制备半固态ZCuSn10P1铜合金浆料,利用Gleeble-3500型热/力学模拟试验机对半固态ZCuSn10P1铜合金进行单向压缩试验,研究半固态ZCuSn10P1铜合金压缩变形时液固两相协同变形行为和组织演变规律.结果 表明:半固态ZCuSn10P1铜合金单向压缩变形后,近球状固相晶粒会变为纤维状或胞状晶.半固态ZCuSn10P1铜合金在应变速率为1s-1条件下从350℃到880℃等温压缩后显微组织发生变形,其主要变形机制为:固相粒子的塑性变形机制(PDS)、固相粒子之间的滑移机制(SS)、液固相混合流动机制(FLS)和液相流动机制(LF).半固态ZCuSn10P1铜合金在压缩过程中,应变速率越大,所承受的变形抗力越大,试样被破坏程度越大,当压缩变形温度较高时,半固态ZCuSn10P1铜合金发生沿晶断裂.  相似文献   

18.
Ti14合金半固态变形后热稳定性的研究   总被引:2,自引:1,他引:1  
以新型阻燃钛合金Ti14(α+Ti2Cu)为对象,对比研究常规和半固态加工后合金的热稳定性.结果表明:热暴露时间不超过150 h时,半固态加工试样的强度明显优于常规加工试样,且塑性相差不大.而热暴露200 h后两种状态加工的合金热稳定性相近.常规加工态,Ti2Cu相以颗粒状弥散分布于晶内;半固态加工,Ti2Cu相熔化并在冷却过程中以条状偏析于晶界,使得断口韧窝粗化并出现少量解理条纹,这是导致合金热稳定性能改变的重要因素.  相似文献   

19.
以9Cr18合金为研究对象,分别对9Cr18热轧态材料及半固态坯料进行触变压缩实验。通过OM和SEM研究了其在加热、半固态及变形冷却后的显微组织演变规律,分析了其压缩过程中的固液流动特性和应力-应变关系。研究表明,半固态坯料制备是保证材料发挥半固态变形特性的必备流程,坯料加热至半固态温度能够保证固液三维均匀分布,充分发挥液相流动特性。仅通过对轧态材料加热至半固态温度区间会导致液相沿原带状组织区域熔化析出,固液分布不均匀。热轧态材料带状熔化致使液相不能形成三维连通,液相流动只能在不同部位的若干区域进行,变形主要通过固相颗粒塑性变形完成,进入最后阶段变形抗力上升。半固态坯料变形过程中固液相分布均匀,当变形进行至触变阶段,液相由于受到向外侧压力梯度作用,在固相间隙中流动,固相颗粒予以协调,发生宏观固液分离,从而使变形抗力随之下降。9Cr18合金在半固态温度区间成形过程中表现出不同于传统热处理的组织演变规律。半固态温度范围内奥氏体溶解合金元素的能力较传统奥氏体化(1050℃)有极大提高,从而提高了奥氏体在快速冷却过程中的稳定性,在冷却后得到过饱和的亚稳奥氏体组织。这种半固态独特的组织演变过程为材料组织性能控制提供一种新的可能。  相似文献   

20.
利用Gleeble-1500热/力学模拟试验机,对采用应变诱导熔化激活法制备的ZCuSn10铜合金半固态及铸态坯料进行单向压缩实验。分析压缩变形条件对半固态ZCuSn10铜合金坯料显微组织的影响,并结合压缩后的显微组织对固液两相的流动规律进行分析。结果表明:SIMA法制备的半固态压缩试样变形抗力仅为常规铸态ZCuSn10铜合金压缩试样的一半。半固态试样压缩变形前液相率为19.4%,压缩变形后液相率为8.1%。半固态ZCuSn10铜合金在不同应变量、变形温度、应变速率下进行压缩实验,试样在过渡区域开始产生液固分离现象,并在中心区域出现液固完全分离现象。变形量越大,半固态ZCuSn10铜合金压缩试样中心部位的液相越少。随着温度的升高,半固态ZCuSn10铜合金压缩试样的端部、过渡区域、心部的液相均增加。随着应变速率的增加,半固态ZCuSn10铜合金压缩试样的过渡区域的液相增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号