首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 152 毫秒
1.
利用正交试验研究热处理工艺参数对含钛、锆CLAM钢力学性能的影响,运用极差分析方法分析了正交试验结果。结果表明,各因素对强度的影响顺序为:回火温度回火时间正火温度正火时间;对伸长率的影响顺序为:回火温度回火时间正火时间正火温度;对断面收缩率的影响顺序为:正火温度回火时间回火温度正火时间;正火温度对硬度影响最大,回火温度对冲击功的影响最大。Ti-Zr-CLAM钢最佳热处理工艺为950℃×15 min+700℃×60 min,空冷。  相似文献   

2.
对WB36CN1钢管件进行了不同正火温度、冷却方式,回火温度、回火时间的热处理。通过正交试验对其进行了多因素分析,进行了WB36CN1钢管件热处理工艺的优化。结合硬度和组织分析,得出了最优的热处理参数。结果表明:影响WB36CN1钢热处理工艺因素主次为:正火后冷却速度正火温度回火温度回火时间。优化的热处理工艺参数为:正火温度950℃、雾冷,650℃回火85 min。  相似文献   

3.
以均匀化退火后的G115钢铸件为对象,研究了不同正火+回火工艺处理对其显微组织及力学性能的影响,其中正火工艺分别为1070 ℃×1 h,AC和1100 ℃×1 h,AC,回火工艺分为一次回火(780 ℃×3 h,AC)和两次回火(780 ℃×3 h,AC+750 ℃×3 h,AC)。结果表明:随着正火温度的上升,G115钢铸件的室温强度和650 ℃高温强度均有所上升,而韧性有所下降,塑性无明显变化;随着回火次数的增加,G115钢的室温强度和650 ℃高温强度均有所降低,韧性和塑性无明显影响。正火+回火处理后G115钢铸件中的析出相主要有Laves相、M23C6以及MX(NbC、VN)相,冲击断口形貌呈解理或准解理断裂特征。随着正火温度升高,马氏体板条块(Block)宽度有所增加,排列相对整齐。原奥氏体晶粒尺寸是G115钢室温强度贡献值中晶界强化量的有效晶粒尺寸。推荐的热处理制度为1100 ℃×1 h(AC)正火+780 ℃×3 h(AC) 回火。  相似文献   

4.
为了优化G115钢大型铸件正火及回火热处理制度,通过有限元方法,分析了正火和回火热处理工艺对铸件温度场分布的影响。结果表明,在正火过程中,铸件下端边缘处温度最高且升温速率最快,距上端约1/4处内表面温度最低,且升温速率最慢。在回火过程中,铸件的温度变化规律与正火过程相似。铸件下端边缘处在目标温度下的保温时间最长,上端约1/4截面厚度中心处的保温时间最短。结合加热速率、温差、加热效率及生产成本,正火优选工艺②,回火优选工艺③。采用优化后的热处理工艺所生产G115钢铸件的显微组织及力学性能均匀且明显高于CB2钢。  相似文献   

5.
探讨了25Mn2钢热处理工艺的优化。实验结果表明,25Mn2钢的最佳热处理工艺为:淬火温度880~910℃,保温时间45~50 min(壁厚为10~12 mm);回火温度580~600℃,回火保温时间60 min。  相似文献   

6.
《铸造技术》2017,(8):1868-1871
研究了回火温度和保温时间对基坑工程用热轧态30MnCr22钢管显微组织以及抗拉强度、屈服强度、断后伸长率、冲击功和硬度的影响。结果表明,抗拉强度、屈服强度和硬度随着回火温度升高而逐渐降低,而冲击功逐渐增大;回火温度不变,延长回火保温时间时,钢的抗拉强度、屈服强度和硬度逐渐降低,断后伸长率和0℃冲击功逐渐增大;基坑工程用热轧态30MnCr22钢管适宜的热处理工艺为:回火温度540℃,回火保温时间50 min。  相似文献   

7.
通过Gleeble-3800热模拟和热处理试验研究了热处理工艺对1.25Cr0.5Mo Si钢组织和性能的影响。结果表明:钢在950℃保温140 min后淬火水冷(冷却速率3~20℃/s),然后710℃保温245 min回火,空冷可获得回火贝氏体组织和优良的综合力学性能。钢板试样经模拟焊后热处理组织为回火贝氏体,钢板在690℃模拟焊后热处理0~32 h后,屈服强度达到400~470 MPa,抗拉强度560~600 MPa。当冲击温度低于-20℃时,冲击功急剧下降。随着模拟焊后热处理时间的延长,碳化物逐渐变粗大并沿晶界分布,导致钢板强度和低温冲击韧性大幅下降。  相似文献   

8.
研究了正火工艺对35SiMnMo截齿钢组织和性能的影响。结果表明:900℃以下加热正火,35SiMnMo钢的强度和硬度随正火温度的升高而增大,加热温度高于900℃时,材料的强度和硬度随正火温度的升高呈下降趋势,900℃时出现最高值。加热温度超过880℃,冲击韧度有下降的趋势。900℃正火250℃以下回火,强度和硬度随回火温度的升高而增大,250℃回火强度和硬度出现峰值。300℃以下回火冲击韧度变化不大,超过300℃回火,冲击韧度下降,400℃出现了贝氏体回火脆性,超过400℃回火冲击韧度显著升高。出现回火脆性的原因与贝氏体铁素体板条之间的奥氏体发生分解有关。35SiMnMo钢900℃正火250℃回火可获得良好的强韧性。  相似文献   

9.
为了解决铲齿使用寿命短的问题,对新型贝氏体组织铲齿用钢及其热处理工艺进行了研究。通过火花直读光谱仪和热膨胀仪检测了贝氏体钢的化学成分和相变点,采用正交试验的方法研究了正火温度、回火温度、回火时间对贝氏体钢韧性的影响,确定了最优的热处理工艺,借助扫描电镜(SEM)、Image-J软件、X射线衍射仪(XRD)及数显显微硬度仪等检测了铲齿用贝氏体钢的组织和组织中相组成比例以及其硬度。研究结果表明贝氏体铲齿用钢在热处理过程中影响冲击性能最主要的因素为正火温度,其次为回火温度、最后为回火时间,得到的最优热处理工艺制度为1080 ℃正火后在250 ℃回火90 min,此热处理条件下贝氏体钢具有良好的韧性(18.45 J)和硬度(46.85 HRC)结合,其组织中马氏体含量为23.985%,残留奥氏体含量为9.850%。  相似文献   

10.
用热处理正交实验方法研究了淬火工艺与回火工艺对KT5331(10Cr11Co3W3Ni Mo VNb NB)钢力学性能的影响。结果表明,KT5331钢的最佳热处理工艺为1080℃保温60 min淬火,680℃保温2 h以上回火,组织为板条状的回火马氏体;淬火和回火参数中,回火温度是影响KT5331钢热处理后力学性能的最主要因素,淬火温度及回火温度对冲击功影响最为明显。淬火温度由1080℃升高至1120℃时奥氏体晶粒出现明显长大;随回火温度升高,材料屈服强度、抗拉强度和硬度明显降低,而冲击功显著升高。  相似文献   

11.
分析了电站典型管件热压弯头、热压三通及热压封头的变形特点,其中热压三通的变形率最大,可达38%。并对G115钢热压弯成形进行了仿真模拟,结果可涵盖变形最为严重的情况。进而设计了热压弯工艺试验,研究了不同成形温度、道次和冷却方式对成形的影响,并对试样进行了外观检验、渗透检验、硬度检验和微观组织观察。通过热压弯工艺试验研究,得出了G115钢管件热压弯成形时的原材料加热温度为1060~1080℃,G115钢管件在600℃以上温度范围内热压弯成形不会产生裂纹等缺陷,其成形后可空冷。试制的G115钢大口径管件的产品性能符合要求,验证了该热压弯工艺的可行性。  相似文献   

12.
通过常规力学性能测试设备、光学显微镜研究了不同热处理工艺对12Cr1MoV钢性能和组织的影响。结果表明:随着正火温度提高,12Cr1MoV钢的抗拉强度和屈服强度变化不大,而冲击韧性有较大增加;随着回火温度提高,经910℃和930℃两种正火温度处理,12Cr1MoV钢的强度和韧性变化不大。12Cr1MoV钢在热轧态、正火态及正火+回火态的组织均为铁素体+珠光体,经910℃正火+680℃回火处理后,钢中的铁素体晶粒度比930℃正火+680℃回火处理后更细小且分布更均匀,性能与前者基本相同。因此,可以选取910℃正火+680℃回火作为12Cr1MoV钢的热处理工艺,从而降低钢板生产的成本。  相似文献   

13.
采用光学显微镜、扫描电镜、电子万能试验机和显微硬度仪等研究了正火+回火+调质热处理工艺对ZG34Cr2Ni2Mo低合金钢显微组织及力学性能的影响。结果表明:正火(870℃×3 h)+回火(600℃×5 h)+调质(淬火860℃×3 h+回火600℃×5 h)的热处理工艺有助于提高ZG34Cr2Ni2Mo低合金钢的力学性能,常温和400℃高温下,其抗拉强度分别提高了24%和16%;400℃高温下伸长率是原始铸态的2.25倍,硬度提高了8%;常温的断口形貌显示,断口由铸态时的韧窝断裂,经热处理后变为解理断裂。  相似文献   

14.
采取光学显微镜、扫描电镜及拉伸、冲击试验机对板厚60 mm的14Cr1MoR热轧钢板正火+回火态和模拟焊后态的组织与性能进行了研究。结果表明:一阶段控轧与两阶段控轧的钢板相比,终轧温度高,轧后冷却速度慢,钢板铁素体晶粒尺寸粗大,珠光体含量多;钢板的强度低,伸长率高,冲击性能低。两阶段控轧的钢板经655 ℃保温3 h模拟焊后热处理,屈服强度下降44 MPa,抗拉强度下降24 MPa,冲击吸能能量降低;模拟焊后保温时间延长到12 h,强度和冲击性能变化不大。两阶段控轧的14CrMoR钢板,经正火+回火或再经过655 ℃模拟焊后热处理,钢板的力学性能优良。  相似文献   

15.
通过显微组织分析、室温拉伸试验、冲击试验、硬度试验,研究不同回火制度下1Cr12Ni3MoVN钢的显微组织与力学性能。结果表明,随着回火温度的增加,1Cr12Ni3MoVN钢析出相数量不断增加,对材料的强度、冲击性能具有增强效果;碳化物聚集长大,基体组织逐渐由马氏体向回火索氏体转变,杂质元素在晶界处偏聚而降低了材料的断裂抗性,冲击韧性降低,回火温度应取较低温度;随565 ℃回火时间的延长,1Cr12Ni3MoVN钢抗拉强度、屈服强度、硬度下降,塑性变化不大,冲击吸收能量略有增加,回火保温时间不宜过长;随回火冷却速度的降低,1Cr12Ni3MoVN钢强度先升后降,塑性变化不大,冲击吸收能量显著下降,硬度变化不大,建议以空冷方式进行回火冷却。最佳的回火热处理工艺为565 ℃保温2 h,空冷。  相似文献   

16.
1Cr5Mo无缝钢管主要为石油炼化装置用管,GB 9948-2006《石油裂化用无缝钢管》中对该钢种的热处理工艺要求为退火.通过系列热处理工艺研究发现:1Cr5Mo无缝钢管经正火工艺后,再进行780℃、保温不少于60 min的回火,可以得到充分的回火索氏体组织,具有优良的综合性能,抗拉强度和硬度也能够满足标准要求.采用正火+回火的热处理工艺,1Cr5 Mo无缝钢管完全可以达到标准要求的退火后的性能指标.  相似文献   

17.
采用埋弧自动焊(SAW)对大口径厚壁G115钢管进行焊接,焊后经785℃回火后发现焊缝冲击吸收能量低于标准要求的最低值。通过对焊接方法、焊材及回火温度的分析和试验表明,焊缝的回火温度超出了熔覆金属的Ac1点,产生不完全相变组织,且碳化物回溶、沉淀强化作用减少、马氏体亚结构和位错密度降低、析出相长大粗化等多种因素的交互作用最终造成了焊缝冲击性能的下降。采用1080℃×3 h正火+770℃×6.5 h回火的热处理修复后,焊缝的冲击性能得到大幅度的提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号