首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
通过预处理(固溶处理)、等温淬火以及不同温度回火等处理方法,利用光学显微镜、扫描电镜、洛氏硬度计、拉伸试验机、冲击试验机等设备研究了奥氏体化温度对40CrNiMo钢奥氏体晶粒长大速度以及硬度的影响,探索了回火温度对贝氏体/马氏体多相钢微观组织和力学性能的影响。结果显示,预处理期间,奥氏体晶粒随奥氏体化温度的升高首先缓慢增长然后快速长大,然而硬度保持在56 HRC左右。250~500 ℃回火时,大量细小的碳化物析出,微观组织仍然保持原来的板条状,试验钢的强度、硬度降低,塑韧性呈现先降低后升高的趋势;400 ℃回火试样伸长率最低,冲击吸收能量最小,表明400 ℃回火时出现回火脆性;回火温度升高到600 ℃,基体组织发生再结晶,转变为回火索氏体,此时强、硬度最低,冲击吸收能量高达147 J。  相似文献   

2.
试验研究了不同奥氏体化温度和等温温度对LM2钢M/B下复相组织和性能的影响。结果表明,随奥氏体化温度升高,奥氏体晶粒逐渐粗化到一定程度,性能较差;下贝氏体量大致相近情况下,随等温温度降低,下贝氏体针及马氏体领域尺寸变小,性能较好。据此,LM2冷作模具钢选用1170℃加热→230~250℃等温5~2h→油冷→200℃回火两次(每次2h)的复相热处理工艺较好。  相似文献   

3.
为优化等温淬回火工艺,提高弹簧钢的质量,以60Si2CrVAT弹簧钢为研究对象,试验分析了淬火与回火对钢的组织性能的影响.结果表明:不同等温淬火温度下随回火温度的升高,弹簧钢的强度下降,910℃×30min+310℃×30min奥氏体化等温淬火得到贝氏体、残余奥氏体、未溶碳化物和少量马氏体后,再经420℃×60min回火水冷后,获得的回火屈氏体综合组织性能相对较佳.  相似文献   

4.
奥氏体化温度对9Cr—1Mo—V—Nb钢组织与性能的影响   总被引:5,自引:1,他引:4  
研究了不同奥氏体化温度加热后9Cr-1Mo-V-Nb(ASME SA-213 T91)钢正火和正火+回火后的组织和力学性能,应用电子显微镜和X-ray衍射分析了钢的组织形态和萃取试样的碳化物分布。结果表明在980-1120℃加热正火后,T91钢均得到板条马氏体组织,但马氏体板条束的大小显著不同。奥氏体加热温度对T91钢的奥氏体晶粒大小和室温性能有明显影响。1060℃以下,钢的性能随加热温度增加而提高,在1070℃出现转折,超温度性能变化不大。影响钢的性能的因素主要与合金元素的固溶和奥氏体晶粒长大有关。探讨了碳化物量及其分布对奥氏体形成和晶粒长大的影响以及对钢的性能的作用机制。  相似文献   

5.
采用不同的奥氏体化温度、淬火温度和回火温度,对QP980汽车高强钢试样进行了热处理,分析了试样的显微组织、拉伸性能和冲击性能。结果表明:奥氏体化温度和淬火温度对试样残余奥氏体含量有明显影响,回火温度对试样残余奥氏体含量无明显影响。奥氏体化温度、淬火温度和回火温度均对试样的平均晶粒尺寸、抗拉强度、屈服强度、断后伸长率和冲击韧度有明显影响。QP980汽车高强钢的热处理工艺优选为:奥氏体化温度1030℃、淬火温度60℃、回火温度480℃。  相似文献   

6.
杨星地 《金属热处理》2014,39(7):107-110
对含V车轴钢热处理过程中正火和回火温度对组织和性能的影响进行了研究。结果表明,第一次正火温度在910 ℃以上时奥氏体晶粒有明显的长大趋势,第二次正火温度在860 ℃以上时奥氏体晶粒开始粗化,回火温度在 550 ℃时拉伸性能良好。通过试验研究得出,采用“840~870 ℃一次正火+800 ℃二次正火+550 ℃回火”的热处理工艺,可以得到均匀的组织、细小的晶粒和良好的力学性能匹配。  相似文献   

7.
奥氏体化温度对X80管线钢组织和力学性能的影响   总被引:2,自引:0,他引:2  
研究了X80钢在不同奥氏体化温度下调质处理后的力学性能和组织变化。结果表明,奥氏体化温度为1150℃时,X80钢的奥氏体晶粒严重粗化,导致粗板条贝氏体铁素体的产生,致使X80钢的强度升高和韧性严重降低;通过奥氏体化温度为850℃、950℃的淬火处理,同时辅以650℃的回火处理,可以使X80钢获得以细小针状铁素体为主的组织,从而获得良好的强韧性配合。  相似文献   

8.
以稀土5Cr钢为对象,研究了热处理工艺(870、900、930 ℃保温50 min水淬,670、690、710 ℃保温90 min回火)对其组织及第二相析出行为的影响。结果表明,试验钢经870 ℃淬火后,组织未完全奥氏体化;随着淬火温度的升高,试验钢完全奥氏体化,原始奥氏体平均晶粒尺寸从900 ℃的13.49 μm增大到930 ℃的15.01 μm,且组织均匀性明显下降。合适的淬火温度为900 ℃。在670~710 ℃回火后,组织分布为回火屈氏体、回火屈氏体+回火索氏体、回火索氏体。回火后第二相为分布在基体上的Cr7C3碳化物及在界面聚集的Cr23C6碳化物。随着回火温度的升高,Cr23C6碳化物比例逐渐增加。为避免回火过程中M23C6型碳化物的聚集和粗化,合适的回火温度为690 ℃。  相似文献   

9.
研究了奥氏体化温度和回火温度对精锻齿轮用H13模具钢显微组织和力学性能的影响。结果表明,随着奥氏体化温度的升高,合金元素溶入的越多,组织趋于均匀,但温度过高则晶粒粗化明显,析出碳化物较多不利于提高钢的塑性和韧性,选取1030~1050 ℃奥氏体化温度较为适宜。二次回火温度控制在560~600 ℃之间,获得了基体组织为回火索氏体、合金碳化物和少量回火马氏体,硬度介于48.9~46.4 HRC间,有利于良好的强韧性配合。  相似文献   

10.
研究了奥氏体化温度对弹簧钢60Si2CrVAT晶粒尺寸和硬度的影响。结果表明,随奥氏体化温度的提高,60Si2CrVAT钢晶粒变粗,残留奥氏体增加,硬度有增高的趋势;在890、910℃奥氏体化,晶粒尺寸和硬度得到最佳配合;回火后,60Si2CrVAT钢残留奥氏体明显减少。  相似文献   

11.
通过显微组织观察和力学性能检测,分析了42CrMo钢在不同回火温度下微观组织形貌和力学性能的变化。通过三维原子探针(3DAP)技术分析500 ℃回火温度下42CrMo钢中元素分布情况,研究了Cr、Mn、Mo等合金元素对钢性能的影响。结果表明,42CrMo钢水淬后在450 ℃回火时显微组织为回火屈氏体,在500~650 ℃区间回火时显微组织均为回火索氏体,随着回火温度的增加,颗粒状碳化物增多;抗拉强度和规定塑性延伸强度降低,-40 ℃低温冲击性能升高。在500 ℃回火可达到12.9级螺栓力学指标(Rm≥1200 MPa,KV2≥27 J),力学性能最佳,且满足低温环境下螺栓用钢的使用要求。3DAP结果表明,钢中的合金元素通过固溶强化和沉淀强化提高了钢的性能。  相似文献   

12.
采用力学性能测试、显微组织观察、扫描电镜观察,研究回火温度对Q1100超高强钢组织和性能的影响规律。结果表明:试验钢900 ℃保温后水淬再200~300 ℃回火后,为回火板条马氏体组织;在 400 ℃和500 ℃回火后,为回火屈氏体组织;在600 ℃回火后,为回火索氏体组织。试验钢具有较高的回火稳定性,在400~600 ℃回火时,α铁素体仍保持板条马氏体的形状和位向。在200 ℃回火后,小角度晶界含量较多,阻碍微裂纹扩展,韧性较好,随着回火温度的升高,小角度晶界占比逐渐减少,在400 ℃回火后,小角度晶界占比较少,碳化物的析出恶化试验钢的韧性,发生了回火脆性,韧性最差,500 ℃和600 ℃回火后,试验钢的小角度晶界占比较400 ℃相差不明显,但试验钢回复程度较大且600 ℃回火发生部分再结晶,回火软化作用较大,韧性较高。当回火温度为200 ℃时,试验钢具有最佳的综合性能,屈服强度为1164.38 MPa,抗拉强度为1429.70 MPa,断后伸长率为14.66%,硬度为430.27 HV3,标准试样-40 ℃冲击吸收能量为92.30 J。  相似文献   

13.
研究了经不同介质和不同温度淬火并于250℃回火后衬板用低碳高合金钢的组织和性能。结果表明,淬火和回火后钢的组织为板条马氏体、少量残留奥氏体及碳化物,具有较高的强韧性。该钢获得良好的韧性与硬度配合的热处理工艺为1020℃油淬、250℃回火。  相似文献   

14.
研究了正火后回火温度对无碳化物贝氏体钢无缝钢管组织和性能的影响。试验结果表明,930 ℃正火后在600 ℃以下回火时,随回火温度的提高,试验材料的抗拉强度有降低的趋势,但降幅不大,强度在973~1012 MPa变化。试验材料的冲击吸收能量在300 ℃达到最大值,为72 J;400 ℃回火时,冲击吸收能量出现最低值,出现无碳化物贝氏体钢的回火脆性;回火温度超过400 ℃时,冲击吸收能量上升;300~350 ℃回火时,伸长率和断面收缩率最高。在400 ℃以下回火时,试验材料的组织由无碳化物贝氏体、块状铁素体和残留奥氏体组成;超过400 ℃回火时,组织为粒状贝氏体及块状铁素体。无碳化物贝氏体钢无缝钢管930 ℃正火,300 ℃回火时具有较佳的综合力学性能。  相似文献   

15.
利用洛氏硬度计及场发射扫描电镜等研究了奥氏体化温度和回火温度对热锻模具用钢5Cr5Mo2V组织和性能的影响。结果表明:试验钢经过不同温度的淬火和回火处理后,组织均为回火马氏体+残留奥氏体+碳化物。当5Cr5Mo2V钢在920~1030 ℃淬火时,随淬火温度升高硬度值增加并于1030 ℃达到最大值62.53 HRC,之后硬度值趋于稳定,且在1030 ℃淬火时晶粒较为细小,超过1030 ℃淬火晶粒开始粗化;试验钢在480~550 ℃回火时,硬度值随回火温度升高逐渐增加,并于550 ℃出现二次硬化峰值,但在此温度下试验钢的冲击性能为最低,此后随回火温度升高冲击性能逐渐增加,当回火温度为600 ℃时,试验钢在维持较高硬度(49 HRC)的同时,冲击吸收能量可达21 J,故5Cr5Mo2V钢的最佳热处理工艺为:1030 ℃淬火30 min后油冷,随后在600 ℃回火(2 h)2次空冷。  相似文献   

16.
采用780℃亚温淬火和不同温度回火,探究回火温度对40CrMoVNbTi钢组织和力学性能的影响。对淬火不同温度回火40CrMoVNbTi钢的力学性能变化及显微组织和冲击断口断貌进行观察和分析。结果表明,780℃亚温淬火,随回火温度的提高,40CrMoVNbTi钢的强度下降,塑性呈上升趋势,300℃回火冲击吸收能量值最低,出现回火脆性。200℃回火组织为回火马氏体和残留奥氏体,其抗拉强度为2150 MPa,KV2为23.8 J;550~600℃回火组织为回火索氏体,韧性较好,其抗拉强度为1190~1070 MPa,KV2为94~123 J,满足AISI 4140钢的力学性能要求,具有较高的冲击性能。  相似文献   

17.
利用SEM、TEM手段研究了不同回火温度对铬镍合金结构钢组织性能影响。结果表明:随回火温度的升高,试验钢的硬度、强度呈下降趋势;塑性、韧性先下降,随后出现缓慢上升平台,最后迅速提高;低温下剪切唇主要为韧窝状,有的韧窝较大且较浅,断口心部呈现准解理断裂特征,随回火温度升高,心部的韧窝数量随之增加;淬火后,200 ℃回火组织为合金渗碳体尺寸细小、板条界面清晰的回火马氏体,400 ℃回火组织为合金渗碳体呈杆状、界面较模糊的回火托氏体,600 ℃回火组织为合金渗碳体呈球状、无板条状特征的回火索氏体。  相似文献   

18.
采用热膨胀仪和热模拟试验机在880~1050 ℃奥氏体化后进行300 ℃等温转变试验,研究了不同奥氏体化温度对中碳贝氏体钢等温相变动力学以及组织形貌、力学性能的影响。结果表明,奥氏体化温度升高导致晶粒尺寸增加,Ms点下降,贝氏体等温相变的孕育期延长;降低奥氏体化温度,可明显缩短贝氏体转变速率峰值出现的时间,说明较低的奥氏体化温度有利于加速贝氏体的转变。在本试验温度范围内,880 ℃奥氏体化处理试样的综合力学性能优异,抗拉强度为1671 MPa, 伸长率为13.3%。  相似文献   

19.
通过Gleeble 1500型热模拟试验机对含Nb高碳试验钢进行了不同奥氏体化温度和冷速下的热处理。采用光学显微镜、扫描电镜、硬度测量等试验手段对试验钢的显微组织、硬度和珠光体片层间距进行了观察和测量。结果表明:奥氏体化温度为950 ℃时,试验钢淬火后晶粒尺寸为34 μm,硬度为813 HV5,以0.1~5 ℃/s冷速冷却至室温的组织为珠光体+铁素体;而奥氏体化温度为1200 ℃时,淬火后晶粒尺寸为134 μm,硬度为827 HV5,以0.1~1 ℃/s冷速冷却至室温的组织为珠光体+铁素体,冷速为5 ℃/s时,组织为针状马氏体+少量的铁素体。在1220 ℃以上Nb全部固溶在奥氏体中,奥氏体化温度过高会导致晶粒过分长大。珠光体片层间距随着奥氏体化温度的升高和冷却速率的提升而变小,片层间距的减小可使硬度值提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号