首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
采用Gleeble-3500热模拟试验机对6061铝合金进行等温热压缩试验,研究变形温度为300~450℃、应变速率为0.01~10s-1、压缩量为60%条件下合金的热变形特性,分析其高温流变应力行为,依据动态材料模型建立热加工图并结合热变形组织分析6061铝合金的热变形机制。结果表明,6061铝合金流变应力随变形温度的升高和应变速率的降低而下降,其高温软化机制以动态回复为主;合金在高应变速率下普遍存在流变失稳,最佳热加工区间变形温度为430~450℃,应变速率为0.01~0.05 s~(-1),该工艺范围内合金出现了部分动态再结晶组织。  相似文献   

2.
采用G leeb le-3500热模拟实验机,对3104铝合金在变形温度为350℃~500℃、应变速率为0.001 s-1~1s-1、变形程度为50%的条件下进行热压缩试验。结果表明,流变应力随应变的增加而显著增大,到达峰值后逐渐降低并趋于稳定,具有明显的稳态流变特征。变形温度和应变速率对流变应力影响较大,并用包含Arrhen iues项的本构方程描述了3104铝合金的高温变形行为。  相似文献   

3.
6061铝合金热变形行为的研究   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟实验机研究了6061铝合金在变形温度573~773 K、应变速率0.01~2 s-1、最大变形程度45%条件下的高温压缩变形行为,分析了合金在高温变形过程中流变应力与应变速率和变形温度之间的关系,建立了6061铝合金高温变形的本构关系.结果表明:合金的流变应力随变形温度的升高而降低,随应变速率的增大而增大;试验条件下,该合金的流变行为可用Zener-Hollomon参数来描述,变形激活能为236.858 kJ/mol,应力指数为8.926.  相似文献   

4.
2519铝合金热变形流变行为   总被引:23,自引:11,他引:23  
采用Gleeble-1500热模拟机进行高温等温压缩实验,研究了2519铝合金在变形温度为300~450℃、应变速率为0.01~10 s-1条件下的流变变形行为.结果表明:应变速率和变形温度对合金流变应力的大小有显著影响,流变应力随温度升高而降低,随应变速率的提高而增大,在应变速率ε<10 s-1条件下,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复的特征;而在ε=10 s-1,t≥350℃的变形条件下,合金发生了局部动态再结晶.可用包含Arrhenius项的Zener-Hollomon参数描述2519铝合金高温塑性变形时的流变行为.  相似文献   

5.
7A85铝合金热压缩流变行为与本构方程研究   总被引:1,自引:0,他引:1  
通过在Gleeble-1500热模拟试验机上进行高温压缩试验,研究了7A85铝合金在变形温度为250~450℃、应变速率为0.001~1 s-1条件下的高温流变行为。研究表明,7A85铝合金在热压缩过程中发生了明显的动态回复与动态再结晶;变形抗力随温度的降低而增加,当温度低于300℃时变形抗力增加明显,同时变形抗力随应变速率的增大而增大;应变速率和流变应力之间满足指数关系,温度和流变应力之间满足Arrhenius方程;采用线性回归方法获得了7A85铝合金高温条件下流变应力的本构方程。  相似文献   

6.
《塑性工程学报》2015,(2):95-99
利用Gleeble-3500热模拟实验机,对6061铝合金在变形温度为350℃、400℃、430℃、460℃、480℃和500℃,应变速率为0.001s-1、0.01s-1、0.1s-1、1s-1和10s-1条件下进行高温压缩实验,得到的真应力-真应变曲线形态基本符合铝合金的热变形力学特征。采用Arrhenius双曲正弦关系描述6061铝合金的高温流变行为,确定其激活能Q=163.4366kJ·mol-1;基于动态材料模型理论绘制6061铝合金热加工图,确定其最佳热加工区域温度为T=420℃~450℃。  相似文献   

7.
采用Gleeble-1500热模拟高温压缩变形试验,研究了7075铝合金高温塑性变形时的流变应力行为。结果表明,应变速率和变形温度的变化影响合金稳态流变应力的大小,在变形温度为350~500℃、应变速率为0.01~1s-1的条件下,随变形温度升高,流变应力降低;而随应变速率提高,流变应力增大;应变速率和流变应力之间满足指数关系,温度和流变应力之间满足Arrhenius关系,可用Zener-Hollomon参数描述7075铝合金高温塑性变形时的流变应力行为。  相似文献   

8.
采用BC路径对6061铝合金进行了4道次等径角挤压,研究了在应变速率为0.05~0.50 s-1、等温处理温度为603~629℃条件下的半固态等温压缩特性,分析了变形温度及应变速率对真应力-真应变曲线的影响。结果表明,等温压缩过程中,6061铝合金的流动应力随变形温度的升高而降低,随应变速率的增加而升高;在变形过程中出现固-液偏析现象,变形较大时固-液偏析现象较明显。  相似文献   

9.
对高硅铝合金光谱标准样品在应变速率为0.01~1s-1、变形温度为350~500℃条件下的热压缩变形行为进行实验研究。结果表明:高硅铝合金热压缩变形中发生了明显的动态回复与动态再结晶,流变应力随应变速率的增加而增加,随温度的增加而降低;通过线性回归分析计算出高硅铝合金材料的应变硬化指数n以及变形激活能Q,获得了高硅铝合金高温条件下的流变应力本构方程;研究工艺参数(变形温度t、应变速率ε)对晶粒尺寸的影响,确定最佳工艺参数:t=400℃,ε=0.1s-1。  相似文献   

10.
采用等应变速率拉伸法研究了温度和应变速率对5A90合金超塑性力学性能的影响。结果表明:5A90铝合金最佳变形温度是400℃,在此温度下,不同应变速率条件下,可以获得较大的伸长率,最大伸长率为193.6%;在变形温度为375℃~500℃时,应变速率对5A90铝合金的流变应力及抗拉强度有显著影响,流变应力及抗拉强度随应变速率升高而增大。在同一应变速率下,5A90铝合金流变应力水平随着变形温度的提高而降低。另外,基于Backofen本构方程,对5A90铝合金在不同温度状态下的强化规律进行了分析,结果表明,随变形温度逐渐升高,应变速率敏感性指数先减小后增大,最后得到5A90铝合金最佳超塑性参数为:T=400℃,ε=0.0005s-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号