首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 420 毫秒

1.  45~#钢宽带激光淬火研究  
   梁二军  杜利平  雒江涛  郭洪《四川激光》,2001年第2期
   :本文利用宽带CO2 激光束 ,对 45 #钢表面进行宽带淬火 ,获得单道淬火宽度 10mm以上。淬硬层硬度达 5 0 0~ 6 30Hv0 3是非淬硬层的 2~ 2 5倍 ,深度达 1 9~ 2 .0mm。激光淬硬层分为表面过热区、均匀相变区和过渡区三个区域 ,所对应的金相组织分别为高碳马氏体、隐晶马氏体和混和马氏体。宽带激光淬火造成的组织细化和大量高碳马氏体的形成是硬度提高的主要原因。在扫描速度v =4mm/s和离焦量 18mm条件下 ,45 #钢宽带激光淬火的最佳功率约为 3 0~ 3 3kW。    

2.  45^#钢宽带激光淬火研究  被引次数:5
   梁二军 杜利平 等《四川激光》,2001年第22卷第2期
   本文利用宽带CO2激光束,对45^#钢表面进行宽带淬火,获得单道淬火宽度10mm以上。淬硬层硬度达500-630Hv0.3是非淬硬层的2-2.5倍,深度达1.9-2.0mm。激光淬硬层分为表面过热区、均匀相变区和过渡区三个区域,所对应的金相组织分别为高碳马氏体、隐晶马氏体和混和马氏体。宽带激光淬火造成的组织细化和大量高碳马氏体的形成是硬度提高的主要原因。在扫描速度v=4mm/s离焦量18mm条件下,45^#钢宽带激光淬火的最佳功率约为3.0-3.3kW。    

3.  钻杆接头材料激光相变硬化层的组织和硬度研究  
   刘丽  吴东江  孙友宏  李守春  庄娟《探矿工程(岩土钻掘工程)》,2002年第6期
   采用功率为 2kW、扫描速度为 10 0mm/min的工艺参数对钻杆接头材料 30CrMnSiA钢进行了表面相变硬化处理 ,研究了相变层的组织和硬度特征。实验结果表明 ,30CrMnSiA钢表面相变硬化层分为完全淬硬层、过渡层和受热影响的基体组织 ,硬化层的显微组织明显细化 ,其表面层的硬度比高频淬火的硬度提高了 30 % ,淬硬层深度达 1 7mm ,比高频淬火深度提高近 1倍。    

4.  30CrNi2MoVA钢激光相变硬化技术  
   戚龙  顾林喻《热加工工艺》,2007年第36卷第2期
   研究了30CrNi2MoVA钢激光淬火后淬硬层微观结构特征及工艺参数对硬化层深度和硬度的影响。结果表明,激光淬火硬化层依其组织特征,分为完全淬硬层、过渡层和热影响层;硬化层深度随着激光功率的升高和扫描速度的减小而逐渐增加,表面硬度则存在一个极大值。    

5.  基于瞬态导热过程预报的激光淬火层设计  
   尹思琪  万鑫浩  罗攀  张雁翔  韩秀丽《热处理技术与装备》,2016年第1期
   本文运用Matlab对45钢激光加热过程的瞬态温度场进行数值模拟,由此预测激光淬火硬化层深度.结果显示,在保证材料不熔化的基础上尽量提高激光加热的功率和吸收系数、降低扫描速度、适当减小光斑尺寸,能够获得较深的淬硬层.在激光加热功率1000 W,光斑边长4mm,扫描速率为25 mm/s,吸收系数70%时,45钢淬硬层深度能达到0.14mm.    

6.  球墨铸铁QT600-3激光淬火工艺研究  
   罗玉梅  樊湘芳《热加工工艺》,2005年第3期
   研究了矩形(5 mm×4 mm)激光束工艺参数(功率密度W和扫描速度v)对QT600 3材料激光淬火淬硬层深度及淬硬层硬度分布的影响。结果表明,在 W=4.5~5.5 kW/cm2、v=4~5 mm/s时,其淬硬层内硬度分布基本均匀,平均硬度值达920 HV,达到基体硬度的2.3倍左右;硬化层深度达0.5 mm左右。    

7.  一种大功率激光加工用新型宽带光斑成形抛物面镜  被引次数:2
   罗曦  陈培锋  王英  熊文策《中国激光》,2008年第35卷第11期
   介绍了一种大功率激光加工用新型宽带光斑成形抛物面镜的设计原理和实验结果.根据几何光学原理,采用光线追迹的方法对该抛物面镜的光斑进行分析,证明通过抛物面镜反射聚焦后,能够将原始圆形激光束整形为光强分布均匀的窄条形光斑.并利用该新型抛物面镜及横流CO2激光器,对45#钢进行了激光相变硬化研究,测量了淬火带尺寸和淬硬层深度,并对硬化层形貌及其金相组织进行了观察和分析.结果表明,当激光器输出功率为3 kW,窄条光斑长度12 mm,扫描速度15 mm/s时,该45#钢淬硬层硬度值可达540~580 HV0.3,是非淬硬层的3.5~4倍.淬硬层深度约为1 mm,单道淬火宽度10 mm以上,硬化层分布均匀.    

8.  34CrNiMo汽轮机齿轮的激光淬火修复  
   陈长军  苏衍战  张敏  常庆明  张诗昌《汽轮机技术》,2010年第52卷第2期
   采用CO2激光器对34CrNiMo汽轮机齿轮进行了表面淬火修复处理,探讨了加工功率和扫描速率对淬硬层厚度、金相组织和淬硬层硬度的影响.结果表明,当扫描速率为1 000mm/min时,随着淬火功率的增大,淬硬层深度增加明显;淬硬层组织明显细化,硬度可以达到HV670.    

9.  35#钢激光宽带淬火研究  被引次数:3
   《应用激光》,2001年第21卷第4期
   利用扫描激光束对35#钢材料进行了宽带激光淬火,在3.0~3.3kW激光功率下,获得单道淬硬带宽15mm,淬硬层深0.53mm.给出了不同激光功率条件下淬火区硬度沿淬硬层深的变化曲线,淬硬层硬度分布基本均匀,平均硬度约为554~675Hv,与基体硬度比较提高了2.3~2.5倍.显微组织结构分析显示淬硬层沿层深方向可分为完全淬硬层、过渡层和高温回火区三个区域.    

10.  42CrMo钢激光淬火组织和硬度的研究  被引次数:3
   苏辉  马冰  依颖辉  张立君《兵器材料科学与工程》,2011年第34卷第2期
   采用YLS-3000型光纤激光器对42CrMo钢进行表面熔凝淬火处理,通过金相显微镜、扫描电镜及维氏硬度计的观察与检测,分析淬硬层组织、硬度、深度及其与激光工艺参数之间的相互关系。结果表明,淬硬层深度随激光功率的增大和扫描速度的降低而增大,随激光功率的减小和扫描速度的增加而减小,而硬度的变化不大。激光熔凝淬火后表层出现深约0.3 mm的熔化区,其硬度比内侧稍低,淬硬层深度可达2 mm以上,硬度约为660HV,但熔化区域中心会出现不均匀的变形,进行熔凝淬火时需预留0.2 mm的加工余量。    

11.  激光淬火工艺参数对T10钢淬硬层深的影响  被引次数:4
   马奎 杨蕴林 等《洛阳工学院学报》,2001年第22卷第4期
   为探讨钢的激光淬火工艺参数对淬硬层深的影响。本文对T10钢进行了激光淬火试验。结果表明:淬硬层深随激光功率的增大、扫描速度的降低、激光束重叠尺寸的增大而增大,其中扫描速度对淬硬层深的影响相对较大;在功率(0.9-1)kW。扫描速度20-30mm/s,光斑直径3mm,激光束重叠1.0-1.5mm的工艺参数范围内,可获得不小于0.5mm的淬硬层深,表面硬度达HV1095左右;此外还发现,激光淬火前用碳黑进行黑化处理,有可能在T10钢表层形成亚共晶组织。    

12.  激光淬火工艺参数对40Cr钢淬硬层深的影响  被引次数:10
   马奎  杨蕴林  王长生  张柯柯  刘志颖《激光技术》,2002年第26卷第4期
   用5kWCWCO2激光器对40Cr钢进行了激光淬火试验,探讨激光工艺参数对淬硬层深的影响。结果表明,激光功率增大、扫描速度降低、激光束重叠尺寸增大,则淬硬层深增大,且扫描速度比激光功率的影响更大。40Cr钢在功率1000~1200W,扫描速度15~30mm/s,激光束重叠尺寸1.0~1.5mm的工艺条件下淬火,可获得不小于0.35mm的平均淬硬层深。    

13.  HT250激光表面硬化的组织及性能研究  
   贾金凤  龚俊  宁会峰  阎相忠《热加工工艺》,2019年第10期
   采用宽带激光扫描,通过改变激光功率(P)和扫描速度(v)对灰铸铁HT250进行激光表面淬火硬化,对淬硬层深度、硬化层微观组织和力学性能进行分析。试验结果表明:当P=2.5 kW、v=20 mm/s时,硬化层深度达0.84mm,表面硬度达64 HRC,硬化层组织主要为分布较均匀的细针状马氏体组织。利用失重法进行表面耐磨性试验,激光处理试样的失重率为0.00041%。    

14.  45#钢激光相变硬化组织及性能  被引次数:1
   邹光坤  宋立新《现代制造技术与装备》,2010年第1期
   应用5kW连续C02激光器对正火态45#钢表面进行激光相变硬化处理,采用金相显微镜和显微硬度计进行显微组织分析及硬度测试。结果表明,激光相变硬化后的剖面组织可分为完全淬硬区(马氏体)、不完全淬硬区(马氏体、铁素体和珠光体)、高温回火区(回火索氏体)。激光相变硬化处理明显提高了正火态45#钢的硬度。当激光功率一定时,随扫描速度的增加,淬硬层深度逐渐降低,且在v=400mm/min和v=1000mm/min时表面硬度分别出现峰值。    

15.  38CrMoAl钢激光淬火研究  被引次数:4
   王清波  晁明举  杨坤  袁斌  梁二军《金属热处理》,2005年第30卷第2期
   利用连续波CO2激光束,对38CrMoAl钢进行了激光表面淬火研究,测量了淬硬层厚度和硬度分布,并对其金相组织进行了观察和分析。结果表明,38CrMoAl钢激光淬硬层的硬度可达850HV0.3,是未淬火基体的3~4倍。激光淬火层分为均匀相变区和过渡区,均匀相变区组织由均匀细化的位错马氏体(包含少量残留奥氏体)组成,过渡区为板条马氏体和未溶铁素体的混合组织。在激光功率和离焦量一定的条件下,硬化层厚度和宽度均随扫描速度增加而减小,而淬硬层硬度首先随扫描速度的增加而增加,达到一最大值时又呈下降的趋势。在离焦量48mm,功率1.8kW的条件下,38CrMoAl钢激光淬火的最佳扫描速度是20mm/s。    

16.  T8A钢激光淬火工艺的研究  
   陈君才  周融  孙加林  周兆《昆明理工大学学报(理工版)》,1993年第2期
   论述了不同原始状的T8A钢激光淬火后的组织和性能特征,并测定了淬硬层宽度、深度、残余奥氏体量及表面硬度等参数。实验结果表明:当功率密度一定时,改变扫描速度,T8A钢的淬硬层深度、宽度、残余奥氏体量及表面硬度均发生明显变化,当功率密度为2143W/cm~2,扫描速度为6mm/s时,最大淬硬层深度为0.77~0.83mm,表面层的组织为隐针马氏体、残余奥氏体和细小的碳化物,表面硬度达Hv790~1000。    

17.  大型导轨板的中频感应表面淬火  
   李魁阁《机械工人(热加工)》,1987年第7期
   我厂处理的一批水利工程事故闸门的主轨——导轨板(图1),用34CrNi3Mo钢制造,要求A表面淬火HRC-18,淬硬层深度5mm。一、淬火加热设备的选择导轨板很长也较宽,为保证淬火质量,用感应加热较为适宜。众所周知,感应加热设备的频率与工件淬硬层深度是成反比的,因此,我们选用功率大、    

18.  激光淬火对调质预处理Cr12MoV钢组织及性能的影响  
   罗雅  姚永成  赵慧峰  田富钛《表面工程资讯》,2017年第17卷第3期
   为改善Cr12MoV钢的表面组织并提高硬度,采用不同的工艺参数对调质预处理的Cr12MoV钢进行表面激光淬火,并对其显微组织、淬硬层深度以及硬度进行表征.结果表明:当激光功率为1 000 W,淬火速度为4 mm/s时,Cr12MoV钢表面有效淬硬层约为0.6 mm,表面硬度相对于调质预处理态提高了47.8%,为66.5 HRC.    

19.  AQ251淬火剂在凸轮轴中频淬火中的应用  
   万朝平《热加工工艺》,1992年第1期
   我厂生产的东风(4)内燃机车16240柴油机凸轮轴,其材质为50Mn钢,要求凸轮型面和轴颈表面进行中频加热淬火。成品淬硬层深度:凸轮型面2~5mm,轴颈表面1.5~4mm。采用水淬时,易产生淬火裂纹;油淬则冷却速度不足,淬火硬度达不到要求。我们曾使用过CL-1有机淬火剂及聚乙烯醇淬火    

20.  G95Cr18 高碳铬不锈钢的激光淬火  
   黄雄荣《热处理》,2018年第2期
   G95Cr18 钢是一种可用于制造轴承的高碳铬不锈钢,淬火后可获得较高的硬度和良好的耐磨性。对尺寸为φ200 mm×15 mm的G95Cr18钢试样,采用固态激光器以17 mm/s的扫描速度和800W、1 200 W和1 600 W的功率进行了激光淬火。检测了试样的表面硬度、硬化层深度和硬度梯度及显微组织。结果表明:经激光淬火的G95Cr18钢试样硬化层最高硬度可达约752 HV0.1,比经真空油淬的硬度615 HV0.1提高了约22.3%;以1 600 W功率激光淬火的G95Cr18 钢试样硬化层由熔融柱状晶区、等轴晶区和淬硬区组成。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号