首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采用Gleeble-1500热模拟高温压缩变形试验,研究了7075铝合金高温塑性变形时的流变应力行为。结果表明,应变速率和变形温度的变化影响合金稳态流变应力的大小,在变形温度为350~500℃、应变速率为0.01~1s-1的条件下,随变形温度升高,流变应力降低;而随应变速率提高,流变应力增大;应变速率和流变应力之间满足指数关系,温度和流变应力之间满足Arrhenius关系,可用Zener-Hollomon参数描述7075铝合金高温塑性变形时的流变应力行为。  相似文献   

2.
热压缩7075铝合金流变应力特征   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟高温压缩变形试验,研究了7075铝合金高温塑性变形时的流变应力行为.结果表明,应变速率和变形温度的变化影响合金稳态流变应力的大小,在变形温度为350~500℃、应变速率为0.01~1 s^-1的条件下,随变形温度升高,流变应力降低;而随应变速率提高,流变应力增大;应变速率和流变应力之间满足指数关系,温度和流变应力之间满足Arrhenius关系,可用Zener-Hollomon参数描述7075铝合金高温塑性变形时的流变应力行为.  相似文献   

3.
7075铝合金高温流变行为的研究   总被引:19,自引:7,他引:19  
采用圆柱试样在Gleeble-1500热模拟机上进行高温压缩变形实验,研究了7075铝合金在高温塑性变形过程中流变应力的变化规律。实验在温度为250-500℃、应变速率为0.05-50s^-1的条件下进行。结果表明:应变速率和变形温度的变化强烈影响着合金流变应力的大小,流变应力随变形温度升高而降低,随就变速率提高而增大,可用ZenerHollomon参数的双曲正弦形式来描述7075铝合金高温压缩变形时的流变应力行为。  相似文献   

4.
7A85铝合金热压缩流变行为与本构方程研究   总被引:1,自引:0,他引:1  
通过在Gleeble-1500热模拟试验机上进行高温压缩试验,研究了7A85铝合金在变形温度为250~450℃、应变速率为0.001~1 s-1条件下的高温流变行为。研究表明,7A85铝合金在热压缩过程中发生了明显的动态回复与动态再结晶;变形抗力随温度的降低而增加,当温度低于300℃时变形抗力增加明显,同时变形抗力随应变速率的增大而增大;应变速率和流变应力之间满足指数关系,温度和流变应力之间满足Arrhenius方程;采用线性回归方法获得了7A85铝合金高温条件下流变应力的本构方程。  相似文献   

5.
6061铝合金热变形行为的研究   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟实验机研究了6061铝合金在变形温度573~773 K、应变速率0.01~2 s-1、最大变形程度45%条件下的高温压缩变形行为,分析了合金在高温变形过程中流变应力与应变速率和变形温度之间的关系,建立了6061铝合金高温变形的本构关系.结果表明:合金的流变应力随变形温度的升高而降低,随应变速率的增大而增大;试验条件下,该合金的流变行为可用Zener-Hollomon参数来描述,变形激活能为236.858 kJ/mol,应力指数为8.926.  相似文献   

6.
为了研究铝合金7075-T651的流变应力变化特征,在高温分离式霍普金森压杆装置上对圆柱试样进行了温度范围25~400℃及应变率范围600~12 000 s-1的动态压缩试验。结果表明:铝合金7075-T651的流变应力对应变率不敏感,对温度有较强的敏感性。总体上,流变应力随温度的升高而减小,但在350~400℃时流变应力差别很小。在高应变速率时,当应变超过一定水平时,应力出现急剧减小,材料发生失效。通过变形后试样的微观组织观察可以发现,应变速率较高时出现绝热剪切带是材料流变应力急剧减小的主要原因。在实验数据基础上,建立了一个基于物理概念的铝合金7075-T651本构模型预测其流变应力,与实验对比表明,所建立的本构模型在较宽的温度和应变速率范围内能够很好地预测铝合金7075-T651的流变应力。  相似文献   

7.
采用圆柱试样在Gleeble-1500热模拟实验机上对原位反应喷射沉积TiC/7075A1复合材料进行高温压缩变形实验,研究其高温热变形行为.变形温度为300、350、400、450℃,应变速率为0.001、0.01、0.1s-1.结果显示,TiC/7075A1复合材料的流变应力随变形温度升高而降低、随应变速率的降低而降低.可用Zener-Hollomon参数的双曲正弦形式描述复合材料高温压缩变形流变应力,其变形激活能为186.786 KJ/mol.  相似文献   

8.
挤压态7075铝合金高温流变行为及神经网络本构模型   总被引:1,自引:0,他引:1  
采用Gleeble1500D热模拟实验机研究挤压态7075铝合金在变形温度为250~450℃、应变速率为0.01~10s-1下单道次压缩过程的高温流变行为。结果表明:材料在350℃及以下变形时,流变应力曲线呈动态回复型;在温度为350℃以上、应变速率为0.1s-1时,流变曲线局部陡降明显;当应变速率为10s-1时,流变曲线发生波动,呈动态再结晶型;挤压态7075铝合金的流变应力曲线峰值应力及稳态应力均高于铸态合金的,且在变形温度较高时,挤压态材料更易于发生动态软化。基于BP神经网络建立挤压态7075铝合金的本构关系模型,预测值与实验值对比表明:所建立的本构模型整体误差在5.35%以内,拟合度为2.48%,该模型可以用于描述7075铝合金的高温变形流变行为,为该合金热变形过程分析和有限元模拟提供基础。  相似文献   

9.
用Gleeble-1500热模拟机研究了SC100-T6铝合金在高温塑性变形过程中应力的变化规律.实验温度为360~500℃.应变速率为0.006~0.036 s-1.结果表明,应变速率和变形温度的变化强烈地影响着该合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大;可用Zener-Hollomon参数的双曲正弦形式来描述SC100-T6铝合金高温压缩变形时的流变应力行为.  相似文献   

10.
采用Gleeble-3800热模拟机,沿与原材料轴线呈0°、45°、90°方向切割试样,在320、400和480℃,变形速率0.01、0.1和1/s时对7075铝合金进行试验。研究了温度、应变速率对7075铝合金热变形过程中力学性能及显微组织的影响。结果表明:在同一应变速率下,7075铝合金的流变应力和进入稳态流动时所需的应变随温度的升高而降低;在低温成形时,晶粒的形状连续而均匀;随着变形温度升高,晶粒逐渐变得粗大;在较高温度变形时,大晶粒周围有细小的等轴晶出现,发生了动态再结晶。在同一变形温度下,7075铝合金的流变应力随应变速率的增大而提高;应变速率越大,越易出现动态再结晶。  相似文献   

11.
Al-Mn-Mg-Cu-Ni合金热压缩变形的流变行为和组织   总被引:1,自引:0,他引:1  
在Gleeble-1500热模拟机上对Al-Mn-Mg-Cu-Ni合金进行热压缩试验,分析合金的流变应力与应变速率和变形温度之间的关系,计算高温变形时的变形激活能,并研究合金在变形过程中的显微组织。结果表明:Al-Mn-Mg-Cu-Ni合金在本实验条件下具有正的应变速率敏感性;流变应力随应变速率的增大而增大,随变形温度的升高而减小。该合金热压缩变形的流变应力行为可用双曲正弦形式的本构方程来描述,也可用Zener-Hollomon参数来描述,其变形激活能为209.84kJ/mol。随着热变形温度的升高和应变速率的减小,合金中的主要软化机制逐步由动态回复转变为动态再结晶。  相似文献   

12.
采用Gleeble-1500D热模拟机研究了7055铝合金在应变速率为0.01、0.1和1s-1、变形温度为300~450℃,最大真应变为0.7条件下的高温塑性变形行为,分析了合金流变应力与应变速率、变形温度之间的关系,计算了合金高温塑性变形时的变形激活能,并观察了合金变形过程中显微组织变化情况。结果表明:合金在热变形过程中流变应力随温度的升高而减小,随应变速率的增加而增大,7055铝合金的高温塑性变形行为可以用包含Zener-Hollomon参数的流变应力方程进行描述。该合金在实验条件范围内热变形以动态回复为主要软化机制并伴随极少量的再结晶发生。  相似文献   

13.
CuNiSiP合金的时效和热变形行为   总被引:1,自引:1,他引:0  
研究了时效温度、时效时间以及冷变形对CuNiSiP合金时效性能的影响,并利用Gleeble-1500D热模拟试验机,采用高温等温压缩试验,研究了变形温度和变形速率对CuNiSiP合金高温压缩变形行为的影响.结果表明:CuNiSiP合金经冷变形后时效能得到较高的综合性能,其经60%变形450 ℃时效2 h,显微硬度达到242 HV0.05,导电率达到35.61%IACS;应变速率和变形温度的变化对合金的再结晶影响较大,变形温度越高,应变速率越小,合金越容易发生动态再结晶,其所对应的峰值应力相对越低.  相似文献   

14.
Al-20Cu-4.5Si-3Ni-0.25RE合金的高温流变本构方程   总被引:1,自引:1,他引:0  
在Gleeble-1500热模拟机上进行高温等温圆柱体压缩试验,研究Al-20Cu-4.5Si-3Ni-0.25RE合金在高温塑性变形过程中流变应力的变化规律。结果表明:应变速率和变形温度的变化强烈地影响Al-20Cu-4.5Si-3Ni-0.25RE合金的流变应力,流变应力随变形温度升高而降低,随应变速率提高而增大。可用Zener-Hollomon参数的双曲正弦形式来描述Al-20Cu-4.5Si-3Ni-0.25RE合金热压缩变形时的流变应力行为。  相似文献   

15.
在Gleeble-3500热模拟机上对半固态7050铝合金进行了高温热压缩试验,研究了该合金在变形温度为420~465℃、应变速率为0.001~0.100s-1条件下的流变应力行为以及变形过程中的显微组织。结果表明,流变应力在变形初期随着应变的增大迅速增大,出现峰值应力后逐渐平稳,流变应力随着应变速率的增大而增大,随着变形温度的升高而下降;流变应力可以用双曲线正弦形式的关系来描述,通过线性拟合计算出该材料的形变激活能等参数,获得流变应力的本构方程。随着变形温度升高和应变速率降低,合金中拉长的晶粒变大,合金热压缩变形的主要软化机制为动态再结晶。  相似文献   

16.
The flow stress of spray formed 70Si30Al alloy was studied by hot compression on a Gleeble- 1500 test machine. The experimental results indicated that the flow stress depends on the strain rate and the deformation temperature. The flow stress increases with an increase in strain rate at a given deformation temperature. The flow stress decreases with the deformation temperature increasing at a given strain rate. The relational expression among the flow stress, the swain rate, and the deformation temperature satisfies the Arrhenius equation. The deformation activation energy of 70Si30Al alloy during hot deformation is 866.27 kJ/mol from the Arrhenius equation.  相似文献   

17.
1. Introduction New spray formed 70Si30Al alloy developed for electronic packaging application has excellent physical characteristics [1-5], which include low coefficiency of thermal expansion (6.8 × 10?6/K), high thermal conductivity (120 W/(m?K)), and low density (2.4 g/cm3), therefore, the exploitation and application of the alloy have an extensive prospect. To evaluate the deformation characteristics of spray formed 70Si30Al and to determine the appropriate hot deformation procedure of …  相似文献   

18.
在Gleeble-1500D热模拟机上采用等温压缩实验研究Zn-8Cu-0.3Ti锌合金的高温流变行为,获得锌合金在变形温度为230~380℃、应变速率为0.01~10 s-1和变形程度为50%条件下的真应力—应变曲线,根据动态材料模型(DMM)建立锌合金的热加工图。结果表明:Zn-8Cu-0.3Ti锌合金在实验条件下具有正的应变速率敏感性,流变应力随着应变速率的增大而增大,随着变形温度的升高而减小,该合金的流变应力行为可用Arrhenius方程来描述。在本研究条件下,Zn-8Cu-0.3Ti锌合金在热变形时存在一个失稳区,即应变速率0.2 s-1以上的区域;在应变速率小于0.001 s-1和340~370℃温度范围内,最大功率耗散系数为0.53,该安全区域内合金的变形机制为动态再结晶。  相似文献   

19.
利用平面应变压缩实验,研究TC21G钛合金在变形温度为870~940℃、应变速率为0.1~1 s^-1条件下的变形行为,并分析显微组织的演变过程。同时,研究加工参数对应变硬化指数n值的影响。结果表明:在应变速率一定的条件下,随着变形温度的升高,显微组织中β相的含量增加,合金的流变应力降低;而在变形温度一定的条件下,随着应变速率的增加,可动位错的迁移速率增加,从而使合金的流变应力升高。TC21G钛合金在两相区进行变形,随着变形温度的升高,应变量的增加以及应变速率的降低,片层α相的球化程度增加。基于显微组织的分析可知,应变硬化指数n值与绝热升温效应,β相的动态再结晶(DRX)以及动态回复(DRV)有密切的关系。  相似文献   

20.
In this study, artificial neural network (ANN) was used to model the hot deformation behavior of 7075 aluminum alloy during compression test, in the strain rate range of 0.0003-1 s?1 and temperature range of 200-450 °C. The inputs of the model were temperature, strain rate, and strain, while the output of the model was the flow stress. The feed-forward back-propagation network with two hidden layers was built and successfully trained at different deformation domains by Levenberg-Marquardt training algorithm. Comparative analysis of the results obtained from the hyperbolic sine, the power law constitutive equations, and the ANN shows that the newly developed ANN model has a better performance in predicting the hot deformation behavior of 7075 aluminum alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号