首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
热障涂层是燃气轮机高温部件保护的重要材料之一,SmTaO4陶瓷具有优异的高温相稳定性和力学性能,有望成为新型热障涂层材料。本研究采用固相法制备TiO2掺杂SmTaO4陶瓷,研究结果表明:掺杂TiO2未改变SmTaO4陶瓷晶体结构,样品均为单斜相,掺杂2% mol TiO2的SmTaO4陶瓷烧结过程中出现的第二相为Sm0.33TaO3;随着TiO2含量增加,SmTaO4陶瓷的热导率先下降后上升,当TiO2掺杂含量为2%时,热导率最低为1.42W?m?1?K?1,低于SmTaO4(1.59W?m-1?K-1,900℃),与7-8YSZ相比(2.1~2.7 W?m?1?K?1,100~900℃)下降了近30%。掺杂2%TiO2的SmTaO4陶瓷热膨胀性系数最大值为10.8×10-6K-1,大于YSZ(~10.0×10-6K-1)和SmTaO4(9.62×10-6K-1,1200℃),与纯SmTaO4相比,TiO2掺杂提高了SmTaO4陶瓷的热膨胀系数。因此,TiO2掺杂SmTaO4陶瓷有望作为新型热障涂层材料使用。  相似文献   

2.
稀土氧化物陶瓷材料在热障涂层上的应用现状   总被引:3,自引:1,他引:2  
航空发动机技术的发展,要求热障涂层用陶瓷材料应具有更低的热导率和更高的相稳定性能.由于稀土氧化物陶瓷材料在热障涂层上的广泛应用,综述了稀土氧化物涂层、镧铝氧化物及稀土氧化物(一元、二元、多元)稳定ZrO2等热障涂层材料的研究现状.结果指出进一步的研究应集中于3个方面:1) 采用合适的方法提高稀土氧化物的高温相稳定性;2)改进镧铝氧化物的热物理性能;3)采用合适的氧化物对ZrO2基热障涂层材料进行掺杂,以进一步改善其热物理性能等.  相似文献   

3.
双陶瓷层热障涂层是热障涂层技术的发展方向之一。等离子喷涂和电子束-物理气相沉积技术是目前最常用的双层涂层制备技术,但存在的固有缺点影响涂层性能的发挥。可实现非视线沉积的等离子-物理气相沉积技术效率高,能对涂层微观结构进行精准调控,发展潜力巨大。稀土氧化物掺杂ZrO2、A2B2O7型烧绿石和萤石结构化合物、钇铝石榴石、独居石结构的稀土磷酸盐、氧化铝等材料被作为表层陶瓷,分别与传统的6%~8%Y2O3部分稳定的ZrO2((6~8)YSZ)层组合构成双陶瓷层,可有效降低涂层的热导率,极大地改善抗熔盐热腐蚀性能,提高耐热温度等。如YSZ/CeO2和TiO2共稳定的ZrO2双层涂层可大幅提高隔热性能,La2(Zr0.7Ce0.3)2O7能有效提高整个涂层的使用寿命,钇铝石榴石能阻隔氧渗入YSZ层并防止粘结层金属的氧化,GdPO4能与Na2SO4+V2O5熔盐反应形成稠密反应层并抑制熔盐的进一步渗入,纳米Al2O3可形成致密结构,并提高涂层的抗热腐蚀能力和抗高温氧化能力。但是,绝大部分材料的热膨胀系数较低、断裂韧性较差,限制了涂层整体性能的发挥。结合纳米技术和等离子-物理气相沉积等新的制备技术,改性修饰稀土锆酸盐等表层材料的热物理性能,引入稀土钽酸盐等热导率低、韧性强、阻氧性好的材料,被认为能提高双层涂层的隔热性能和使用寿命。  相似文献   

4.
纳米ZrO2-Y2O3-La2O3热障涂层的结构与性能研究   总被引:1,自引:0,他引:1  
采用喷雾造粒工艺在纳米ZrO2-8wt%Y2O3(8YSZ)基体中添加了纳米La2O3,并进行团聚、热处理,作为喷涂喂料.NiCrAlY(Ni-25Cr-5Al-0.5Y,wt%)作为粘结层材料,采用等离子喷涂技术制备热障涂层.对涂层的组织结构和性能进行了表征与分析.结果表明:喷涂后涂层相组成只有稳定的t相;涂层具有典型的等离子喷涂结构;添加纳米LaO3能够降低涂层的热导率,且涂层的结合强度随掺杂量的增多而提高.  相似文献   

5.
氧化物掺杂YSZ热障涂层的最新研究进展   总被引:1,自引:0,他引:1  
随着先进航空发动机涡轮叶片热障涂层服役温度、服役寿命以及隔热性能的不断提升,研制温度高、使用寿命长和隔热性能优异的热障涂层材料,已成为国际高温防护涂层领域的研究热点。氧化物掺杂YSZ涂层因其良好的热学性能,成为最有可能替代YSZ涂层在航空发动机热端部件表面获得应用的热障涂层材料。综述了氧化物掺杂YSZ热障涂层研究取得的成果和存在的问题,重点阐述了不同氧化物掺杂对YSZ涂层性能的影响机理,并简述了目前国内外对该类涂层相关制备技术的研究进展。提出未来关于热障涂层的研究,应在进一步优化设计多元氧化物掺杂改性YSZ涂层的基础上,结合计算模拟,对多元氧化物掺杂的耦合作用机制进行深入剖析,同时结合新一代高温合金的性质,发展高温合金-粘结层-陶瓷层相匹配的新型热障涂层体系,从热力学-动力学两个方面考察其使役行为和失效机制,最终促进该类涂层的实际应用。  相似文献   

6.
随着航空航天技术的不断发展,恶劣的工作环境对镍基高温合金的使用性能提出了更高的要求,热障涂层是一种应用于涡轮发动机热端部件的表面技术,通过沉积在镍基高温合金表面以降低基底表面温度。概述了传统氧化钇部分稳定氧化锆热障涂层的性能优势,包括优异的隔热性能、较高的热膨胀系数与断裂韧性。同时归纳了氧化钇部分稳定氧化锆热障涂层在高温环境下存在的问题,包括氧化锆相变与涂层烧结造成的过早失效。在此基础上,重点综述了近年来热障涂层先进陶瓷材料的研究进展,包括稀土陶瓷材料与自愈合材料,其中稀土陶瓷材料包括稀土掺杂氧化锆、成分掺杂与结构设计的稀土锆酸盐、稀土磷酸盐、3种不同结构的稀土钽酸盐、高熵稀土陶瓷材料以及稀土铌酸盐等,自愈合材料包括二硅化钼与碳化钛。针对各种热障涂层陶瓷材料,分别从热震寿命、热膨胀系数、热导率、耐腐蚀性、断裂韧性等方面进行了归纳,并总结了各材料现阶段发展的不足之处。最后展望了热障涂层材料的发展方向。  相似文献   

7.
稀土掺杂Gd2 O3对YSZ/(Ni,Al)热障涂层组织与性能的影响   总被引:2,自引:1,他引:1  
目的提高YSZ/(Ni,Al)复合涂层与基体的结合强度和抗高温氧化性。方法采用电泳沉积的方法,在Inconel 600高温合金表面上沉积YSZ/(Ni,Al)复合涂层和掺杂稀土Gd2O3-YSZ/(Ni,Al)(简称G-YSZ/(Al,Ni))复合涂层,后进行真空烧结,然后对制备好的热障复合涂层进行划痕实验和等温循环氧化实验。通过对样品进行等温循环氧化实验,获取不同氧化时间段的复合涂层样品,并采用SEM和XRD对复合涂层组织和形貌进行分析。结果在1100℃等温氧化过程中,未掺杂稀土元素的氧化增重速率为0.0057 mg/mm2,而掺杂钆元素的氧化速率为0.0049 mg/mm2,氧化增重速率比未掺杂稀土YSZ/(Ni,Al)复合涂层的低。G-YSZ/(Ni,Al)热障复合涂层在等温氧化过程中颗粒长大较小、裂纹少、表面更加致密。真空烧结后的YSZ/(Al,Ni)复合涂层和G-YSZ/(Al,Ni)复合涂层与基体的结合强度约为4.0 N,氧化100 h后,掺杂稀土的G-YSZ/(Al,Ni)复合涂层结合强度为3.5 N,未掺杂稀土的YSZ/(Al,Ni)复合涂层与基体的结合强度为2.6 N。G-YSZ/(Ni,Al)热障复合涂层中存在Gd2Zr2O7相和稳定的Ni Al2O4相,Gd2Zr2O7相具有良好的稳定性以及耐高温氧化。结论掺杂稀土氧化钆的G-YSZ/(Al,Ni)涂层的抗高温氧化性能显著提高。在等温氧化过程中,掺杂稀土元素的G-YSZ/(Al,Ni)复合涂层,其颗粒趋向于均匀化,裂纹明显变少,使得涂层更加致密,表面更加平整。等温氧化100 h后,掺杂了稀土氧化钆的G-YSZ/(Al,Ni)复合涂层基体之间具有更好的结合力,抗剥落性和服役寿命较好。  相似文献   

8.
以HfO2、Ta2O5粉体为原料,采用固相法合成Hf6Ta2O17材料。在空气气氛下1600℃常压烧结8h制备块体试样。用X射线衍射(XRD)仪检测合成粉体的相结构,通过场发射扫描电镜(SEM)观察试样的微观形貌,用热膨胀仪检测试样的热膨胀系数(TEC)。结果表明:固相法可以制备纯净单相的Hf6Ta2O17材料和比较致密的块体试样;Hf6Ta2O17材料在20~1400℃温度范围内没有相变,其高温相稳定性优于YSZ材料;Hf6Ta2O17在1200℃的热膨胀系数为9.59×10-6/℃,与YSZ材料的热膨胀系数接近,有望用于热障涂层。  相似文献   

9.
稀土掺杂Nd2O3对YSZ/(Ni,Al)复合涂层组织与性能的影响   总被引:1,自引:0,他引:1  
目的提高YSZ/(Al,Ni)复合涂层与基体的结合强度和抗高温氧化性。方法采用电泳沉积方法在Inconel600高温合金表面沉积YSZ/(Al,Ni)复合涂层和掺杂稀土Nd_2O_3-YSZ/(Al,Ni)(N-YSZ/(Al,Ni))复合涂层,然后进行真空烧结,最后对制备好的热障复合涂层进行划痕实验和等温循环氧化实验。通过对样品进行等温循环氧化实验,获取不同氧化时间段的复合涂层样品,并通过采用SEM和XRD分别对复合涂层形貌和微观结构进行分析。结果在1100℃等温氧化过程中,未掺杂稀土元素复合涂层的氧化增重速率为0.0057 mg/cm~2,而掺杂钕元素的复合涂层的氧化增重速率为0.0046 mg/cm~2,比未掺杂稀土YSZ/(Al,Ni)复合涂层低。N-YSZ/(Al,Ni)热障复合涂层在等温氧化过程中颗粒较小,裂纹少,表面更加致密,并且发生自愈合现象。真空烧结后的YSZ/(Al,Ni)复合涂层和N-YSZ/(Al,Ni)复合涂层与基体的结合强度大约为4.0 N,在经过氧化100 h后,掺杂稀土的N-YSZ/(Al,Ni)复合涂层的结合强度为3.26 N,未掺杂稀土钕元素YSZ/(Al,Ni)复合涂层与基体的结合强度为2.6 N。N-YSZ/(Al,Ni)热障复合涂层中存在Nd_2Zr_2O_7相和稳定的NiAl_2O_4相,Nd_2Zr_2O_7相具有良好的稳定性以及耐高温氧化性。结论掺杂稀土氧化钕N-YSZ/(Al,Ni)复合涂层,在1100℃、空气氛围下等温氧化过程中发生自愈合现象。随着氧化时间的增加,掺杂稀土元素钕的N-YSZ/(Al,Ni)复合涂层表面的颗粒趋于均匀化,裂纹明显变少,使得涂层更加致密和平整。掺杂了稀土钕元素的N-YSZ/(Al,Ni)复合涂层与基体之间具有更高的结合强度。在1100℃、空气氛围下等温氧化100 h时,掺杂了稀土钕元素的N-YSZ/(Al,Ni)复合涂层与基体的结合强度明显大于YSZ/(Al,Ni)复合涂层,提高了N-YSZ/(Al,Ni)复合涂层的抗剥落性和服役寿命。在1100℃、空气氛围下等温氧化过程中,掺杂稀土元素钕的N-YSZ/(Al,Ni)复合涂层的抗高温氧化性能比未掺杂稀土元素的YSZ/(Al,Ni)复合涂层的抗高温氧化性能显著提高。  相似文献   

10.
采用化学共沉淀法制备了一系列不同比例的Sn O2掺杂YSZ陶瓷粉体,并无压烧结制备了致密的块体材料。通过XRD和电子探针分析了材料的结构和成分组成,确定了Sn O2的固溶度以及t'相稳定的成分范围。采用显微压痕法和超声法测试了样品的硬度、断裂韧性和弹性模量。实验结果表明,Sn O2掺杂保持了t'相YSZ的稳定性,同时提高了YSZ的力学性能。另外考虑到热导率的降低,Sn O2掺杂有望提高YSZ热障涂层材料的综合性能。  相似文献   

11.
热障涂层失效机理、改进方法及未来发展方向   总被引:1,自引:0,他引:1  
热障涂层(Thermal Barrier Coatings,TBCs)是用于航空发动机及燃气轮机的一种高效功能性隔热涂层,常用材料为氧化钇(质量分数6%~8%)部分稳定氧化锆(YSZ).首先,从TGO生长、高温烧结、CMAS腐蚀、盐雾腐蚀和热膨胀失配等方面介绍了YSZ的失效机理,以上因素会从不同程度上造成涂层分层、开裂乃至失效.其次,介绍了通过控制界面反应速度和元素扩散速度,改变涂层化学成分及结构等方法,改善YSZ性能.为适应下一代超高温热障涂层的发展要求,近年来,国内外针对制备工艺的改善和新材料性能进行了研究.通过调控等离子物理气相沉积的喷距,能得到不同微观结构的热障涂层,运用纳米粉体再造粒技术,能制备出抗热震性能、耐磨抗腐蚀性、韧性以及可加工性更为优异的纳米结构涂层.ABO3型钙钛矿结构钡盐、钽酸盐、石榴石结构稀土铝酸盐、磁铅石结构稀土铝酸盐、独居石结构稀土磷酸盐等新型陶瓷层材料的研究是一大热点.与传统YSZ相比,新陶瓷层材料有优异的高温相稳定性、高热膨胀系数、高热导率等性能,但存在断裂韧性低、组分复杂等缺点.最后,为热障涂层未来研究指出了方向,并展望了其面临的挑战.  相似文献   

12.
以BaCO3、ZnO、Ta2O5为原料,采用固相反应法制备了Ba(Zn1/3Ta2/3)O3(BZT)陶瓷材料。对BZT的物相结构、高温相稳定性、热导率、热膨胀系数和喷涂工艺适应性进行表征研究,并与同类Ba(Mg1/3Ta2/3)O3(BMT)、Ba(Ni1/3Ta2/3)O3(BNT)和Ba(Sr1/3Ta2/3)O3(BST)对比,以评价BZT作为热障涂层陶瓷层材料的应用潜力。结果表明,BZT在室温至1500℃内无相变,且经1600℃长时处理48 h后不分解,表现出良好的高温相稳定性;在1200℃,BZT的热导率仅为1.65 W·m-1·K-1,明显低于BMT(2.57 W·m-1·K  相似文献   

13.
Nanostructured La2Ce2O7-doped YSZ coatings were developed using atmospheric plasma-spraying technique by optimizing various process parameters. To ensure the retention of nanostructure, the molten state of nanoagglomerates was monitored using plasma and particle diagnostic tools. It was observed that the morphology of the coating exhibits a bimodal microstructure consisting of nanozones reinforced in a matrix of fully-molten particles. The thermal diffusivity of nano-LaCeYSZ coatings is lower than that of nano and bulk YSZ. The reason for this change in thermal diffusivity may be attributed to scattering of phonons at grain boundaries, point defect scattering and higher inter-splat porosity. Also, the thermal conductivity of the nanocomposite coatings was lower than those of nanostructured and bulk YSZ coatings. XRD results show cubic zirconia with a small amount of tetragonal zirconia. The average grain size of the as-sprayed La2Ce2O7-YSZ nanocomposite coatings is ~150-200 nm. The improved thermal behavior is mainly due to a dense, packed, and more compact structure of the coatings.  相似文献   

14.
利用自行研制的La1.4Nd0.6Zr2O7(LNZ)喷涂粉末,采用大气等离子喷涂在Mo基体上制备LNZ热障涂层.测试粉末的各项热物理性能,考核涂层的抗热震性能和高温隔热性能,并与常规氧化钇稳定氧化锆(YSZ)涂层进行比较.结果表明,与YSZ相比,LNZ由于具有热膨胀系数小、导热系数低、烧结速率低等特点而更适合在Mo基体作为热障涂层使用.  相似文献   

15.
在氧分压约为100 Pa的氮气氛下烧结制备了掺杂Y2O3、Yb2O3的10Cu-(NiFe2O4-10NiO)金属陶瓷,并对其进行导电性能测试和10h(Na3A1F6-Al2O3体系中)铝电解实验.采用XRD、SEM和EDS分析稀土氧化物以及其与陶瓷基体反应产物的分布,考查电解实验后材料表层显微结构变化尤其是金属相的流失情况,评价稀土氧化物的添加对金属陶瓷电解初期腐蚀行为的影响.结果表明:掺杂稀土氧化物均使NiO相呈连通迹象,掺杂Yb2O3金属陶瓷晶粒较未掺杂的粗大,其与陶瓷相反应生成物成点线状分布于NiFe2O4相晶界,Y2O3与陶瓷相反应生成物则分布于NiO与NiFe2O4相间;所制备材料具有半导体特征,随着稀土氧化物的掺杂,材料导电性呈下降趋势;掺杂稀土氧化物尤其是Yb2O3有利于提高材料的耐蚀性能.  相似文献   

16.
Improvement in the performance of thermal barrier coatings (TBCs) is one of the key objectives for further development of gas turbine applications. The material most commonly used as TBC topcoat is yttria-stabilized zirconia (YSZ). However, the usage of YSZ is limited by the operating temperature range which in turn restricts the engine efficiency. Materials such as pyrochlores, perovskites, rare earth garnets are suitable candidates which could replace YSZ as they exhibit lower thermal conductivity and higher phase stability at elevated temperatures. The objective of this work was to investigate different multilayered TBCs consisting of advanced topcoat materials fabricated by suspension plasma spraying (SPS). The investigated topcoat materials were YSZ, dysprosia-stabilized zirconia, gadolinium zirconate, and ceria–yttria-stabilized zirconia. All topcoats were deposited by TriplexPro-210TM plasma spray gun and radial injection of suspension. Lifetime of these samples was examined by thermal cyclic fatigue and thermal shock testing. Microstructure analysis of as-sprayed and failed specimens was performed with scanning electron microscope. The failure mechanisms in each case have been discussed in this article. The results show that SPS could be a promising route to produce multilayered TBCs for high-temperature applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号