首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
采用热模拟实验方法获得了AZ31镁合金热变形真实应力-真实应变曲线,分析了变形工艺参数对AZ31镁合金热变形动态再结晶晶粒尺寸的影响规律。随着塑性变形应变速率的增大,动态再结晶晶粒尺寸减小。随着塑性变形温度的升高,晶粒尺寸增大。基于Yada模型,建立了AZ31镁合金热变形动态再结晶晶粒尺寸与变形工艺参数关系模型,以及动态再结晶临界应变与变形温度关系模型。晶粒尺寸预测模型计算值与实验值相吻合,最大相对误差为8.5%。临界应变模型计算值与实验值相吻合,最大相对误差为8.1%。建立的动态再结晶晶粒尺寸预测模型和临界应变预测模型的适用条件为变形温度250~400℃,应变速率0.01~1.0 s-1。  相似文献   

2.
在变形温度为250~450℃、应变速率为0.005~5 s-1的条件下,采用热模拟压缩实验得到流动应力-应变曲线,研究了挤压态镁合金热变形和动态再结晶行为。结果表明:AZ31镁合金发生动态再结晶的临界应变随着变形温度的升高或应变速率的减小而降低;镁合金变形初期发生动态再结晶所需要的激活能为191.2 kJ·mol-1。基于实验数据回归分析,建立AZ31镁合金动态再结晶临界应变模型,得到动态再结晶临界应变与流动应力曲线峰值应变的比值约为0.57;应用Avrami方程建立镁合金动态再结晶动力学模型,预测出镁合金动态再结晶临界应变值,与微观组织实验结果一致,验证了模型的正确性,可以用于AZ31镁合金热加工中的动态再结晶预测。  相似文献   

3.
采用变形温度200~500℃,应变速率为0. 005~5 s-1时在Gleeble1500热模拟试验机上对AZ31挤压态镁合金热变形行为进行试验研究。运用单参数法并引入温度补偿应变速率因子Z,构建挤压态镁合金动态再结晶临界表征模型,通过观察典型变形条件下微观组织的动态再结晶情况验证模型正确性。结果表明:发生动态再结晶所需的激活能为171. 15 k J/mol。此外,得到峰值应变与Z参数的定量关系。临界应变与临界应力随着温度升高和应变速率降低而减小,减小Z值可促进挤压态镁合金动态再结晶的发生。  相似文献   

4.
在单向压缩热模拟试验机上对AZ31-1Sm合金在变形温度为300~450℃、应变速率为0.01~1 s-1条件下的热变形行为和微观组织进行研究。结果表明:AZ31-1Sm镁合金在热压缩变形时,流变应力随着应变速率的增大和变形温度的降低而增大;该合金的热压缩流变应力行为可用双曲正弦形式的本构方程来描述,在本实验条件下,AZ31-1Sm镁合金热热变形激活能Q为160.8 k J/mol。AZ31-1Sm易发生动态再结晶,在高变形温度和低应变速率条件下动态再结晶趋势明显,动态再结晶晶粒尺寸随着变形温度的增加和应变速率的降低而增大。  相似文献   

5.
用热模拟实验机对AZ61镁合金在变形温度为150℃~400℃,应变速率为0.01s-1~10s-1的条件下进行压缩变形,研究不同变形条件下AZ61镁合金的力学响应。结果表明,AZ61镁合金压缩变形时表现出动态再结晶特征,随温度上升,再结晶容易发生且应力峰降低;随变形速率增加,发生再结晶转变的临界应变增大。相比之下,变形温度对AZ61合金力学行为的影响要大于应变速率的影响。  相似文献   

6.
在单向压缩热模拟试验机上对AZ31-1Sm合金在变形温度为300~450℃、应变速率为0.01~1 s-1条件下的热变形行为和微观组织进行研究。结果表明:AZ31-1Sm镁合金在热压缩变形时,流变应力随着应变速率的增大和变形温度的降低而增大;该合金的热压缩流变应力行为可用双曲正弦形式的本构方程来描述,在本实验条件下,AZ31-1Sm镁合金热热变形激活能Q为160.8 k J/mol。AZ31-1Sm易发生动态再结晶,在高变形温度和低应变速率条件下动态再结晶趋势明显,动态再结晶晶粒尺寸随着变形温度的增加和应变速率的降低而增大。  相似文献   

7.
采用圆柱体等温热压缩试验对AZ80镁合金的变形行为进行研究。结果表明,当变形温度为200~350℃,应变速率为0.002~1s-1,随着应变速率的增加和变形温度的降低,合金的流变应力增加;通过线形回归获得了AZ80镁合金高温条件下的流变应力本构方程,发现应变速率敏感指数m随着温度的升高呈上升趋势;同时采用力学方法直接从流变曲线确定了AZ80镁合金发生动态再结晶的临界应变量,并回归出临界应变量与Zenner-Hollmon参数的关系式。  相似文献   

8.
在轧制温度603~703 K、轧制压下量20%~40%、应变速率4~16 s-1下对AZ31镁合金进行轧制变形,研究轧制压下量、应变速率和变形温度对AZ31镁合金变形组织的影响,分析了镁合金的动态再结晶机制。结果表明:应变速率和变形温度不仅影响动态再结晶进行的程度,而且能够改变再结晶的方式或形核机制。当轧制应变速率= 13.9 s-1,变形温度T=603 K时,再结晶方式为孪生动态再结晶;变形温度升高到703 K时,沿晶界有链状新晶粒出现。当变形温度T= 673 K,应变速率= 11.35 s-1时,再结晶方式以孪生动态再结晶为主;应变速率降低到= 4 s-1时,再结晶方式以旋转动态再结晶为主。  相似文献   

9.
半连续铸造AZ31B镁合金的热压缩变形行为   总被引:1,自引:0,他引:1  
针对半连续铸造的AZ31B镁合金,采用Gleeble-1500热/力模拟机在变形温度为473~723 K、应变速率为0.01~10 s-1、最大变形量为80%条件下进行热/力模拟研究;结合热变形后的显微组织,分析合金力学性能与显微组织之间的关系。结果表明:当变形温度一定时,流变应力和应变速率之间存在对数关系,并可用包含Arrheniues项的Z参数描述半连续铸造的AZ31B镁合金热压缩变形的流变应力行为;实验合金在523 K时开始发生动态回复;随着变形温度的升高和应变速率的降低,动态再结晶开始对AZ31B合金的变形行为产生明显影响,在变形温度623 K以上的各种应变速率下,AZ31B镁合金易变形。  相似文献   

10.
AZ80镁合金热变形行为研究   总被引:4,自引:0,他引:4  
采用圆柱体等温热压缩试验对AZ80镁合金的热变形行为进行研究.结果表明,当变形温度为200~350℃、应变速率为2×10-3~1 s-3时,随着应变速率的增加和变形温度的降低,合金的流变应力增加;通过线性回归获得了AZ80镁合金高温条件下的流变应力本构方程,发现应变速率敏感指数m随着温度的升高呈上升趋势;同时采用力学方法直接从流变曲线确定了AZ80镁合金发生动态再结晶的临界应变量,并回归出临界应变量与Z参数的关系式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号