首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
SiC晶须砂轮的开发及其磨削特性   总被引:5,自引:3,他引:2  
细磨粒砂轮用来进行高精度磨削。然而,由于细磨粒具有较小的结合面积,即使在正常的磨削条件下,磨粒易于从砂轮表面上脱落,导致加工精度与效率低下。近十年来,由于SiC晶须(微细纤维)具有高硬度、高强度、高耐磨性和相容性好等优良的机械与物理化学特性,因而广泛地用作金属、陶瓷、塑料及复合材料的强化材料^[1-2]。SiC晶须的平均长度和直径分别为50μm左右和数微米,比相同直径的细磨粒具有相对较大的结合面积。1993年以来,日本山口胜美、洞口严教授和中国魏源迁教授使用SiC晶须作为磨料和酚醛树脂结合剂,成功地开发了一种SiC晶须砂轮^[3-5]。该砂轮中的SiC晶须按同一方向排列且与砂轮磨削面相垂直,晶须的端部可作为切削刃。为了考察此砂轮的磨削特性,本文对难加工材料如模具钢SKD11(HRC60))进行了大量的磨削试验。试验结果表明该砂轮不仅具有很高的磨削比(6000以上)和磨削效率,而且能获得纳米级加工表面(Ral.5nm/Ry16nm)。  相似文献   

2.
为了实现粗磨粒金刚石砂轮延性域磨削加工SiC陶瓷材料,采用碟轮对粒径为297~420μm的粗磨粒金刚石砂轮进行了精密修整。然后,使用经过修整好的粗磨粒金刚石砂轮对SiC陶瓷进行磨削加工。在此基础上,对不同的砂轮线速度、工件进给速度、磨削切深对SiC陶瓷表面粗糙度和表面形貌的影响进行了研究。试验结果表明:经过精密修整的粗磨粒金刚石砂轮是能够实现SiC陶瓷材料的延性域磨削的,表面粗糙度值Ra达到0.151μm;随着砂轮线速度增大、工件进给速度和磨削切深减小,SiC陶瓷表面的脆性断裂减小,塑性去除增加。  相似文献   

3.
细磨粒砂轮用于高精度磨削。然而,由于细磨粒具有较小的结合面积和强度,即使在正常的磨削条件下,磨粒易于从砂轮表面上脱落,导致加工精度与效率低下。近年来,由于Al2O3纤维具有优良的机械与物理化学性能如高强度、高弹性模量、耐磨损、耐高温氧化及耐酸、耐碱等,与基质材料具有良好的相容性,因而被广泛地用于FRP、FRC和FRM等的强化材料。A2O33纤维的平均直径和长度分别为3—5μm和数百μm,比相同直径的细磨粒具有较大的结合面积和强度。因此,1998年以来,日本山口胜美、洞口严教授和中国魏源迁教授使用Al2O3纤维替代磨粒作为磨料,与酚醛树脂结合剂结合,成功地开发了一种A12O3纤维砂轮,能克服磨粒砂轮的缺陷。该砂轮中的纤维排列方向与磨削面相垂直,纤维的端部可用作为切削刃,而且纤维砂轮比磨粒砂轮细密,使用纤维砂轮可实现干磨削和纳米加工。为了考察Al2O3纤维砂轮的磨削特性,本文对难加工材料如模具钢SKD11(HRC60)进行了大量的磨削试验,试验结果表明能获得纳米级加工表面(Ra2.1nm/Ry22nm)。  相似文献   

4.
利用钎焊方法对单晶RVD和多晶PDGF1 2种金刚石磨料表面进行涂覆,制备涂覆前后4种磨料的树脂结合剂金刚石砂轮。研究钎焊过程对金刚石磨粒表面形貌和力学性能的影响,并测试不同砂轮加工硬质合金时的磨削性能。结果表明:钎焊涂覆方法可以在金刚石磨料表面有效包覆一层钎料合金涂层,涂层与金刚石磨粒间形成TiC界面结合。与涂覆前磨粒相比,涂覆后RVD磨粒的冲击韧性(TI)值减小了6%,PDGF1磨粒的TI值增大了42%。用钎焊涂覆PDGF1磨料制作的树脂结合剂金刚石砂轮拥有更低的磨削力和更高的磨削比, 但用钎焊涂覆RVD磨料制作的树脂结合剂金刚石砂轮的结果则相反。在相同加工参数下,4种砂轮磨削硬质合金的表面形貌相似,其表面粗糙度在0.50~0.68 μm。   相似文献   

5.
磨削力是磨削过程中的重要参数,同加工效果之间关系密切。使用不同磨料的陶瓷结合剂砂轮进行缓进深切颗粒增强钛基复合材料的磨削试验,研究磨削力与磨削参数和磨料种类的关系。结果表明:普通刚玉砂轮的磨削力是微晶刚玉砂轮磨削力的3~4倍,被加工材料表面更容易产生缺陷。因此,在缓进深切磨削工艺条件下,微晶刚玉砂轮更适合钛基复合材料的磨削。   相似文献   

6.
近几年微粉化和高精密化在电子和光学工业上成为了一种重要的加工技术,在高精密的微型加工中开始使用各种精细金刚石砂轮。但是在模压砂轮中,随着磨料越来越精细,砂轮中磨料的均匀分散和高结合强度越来越难以达到,这导致了在磨削加工中磨粒从砂轮表面过早的脱落。因磨粒过早脱落而造成被加工表面出现划痕。修整间隔时间越短(因为有效磨粒数的减少)被加工的工件形位精度更差。因此,选择更微细的磨料,使得整形和修整更加频繁,导致了砂轮寿命的缩短并降低了磨削效率。 用微粉金刚石砂轮加工产品的典型实例包括光纤连接器用V形槽和碳化钨模具上的V形槽。这些V形槽的槽底倒角半径要求尽量的小。然而,即使使用粒度为4000。的微粉金刚石砂轮,槽底半径也不小于几个微米。本文中,K.Suzuki和T.Uematsu教授对近年来有关导电金刚石磨削工具应用的一系列研究作了综述,特别介绍了CMX850金刚石磨料新产品,元素六公司用最近投入市场的精细聚晶金刚石(PCD)生产的砂轮对碳化钨工件上的V形槽进行了磨削加工,可获得槽底倒角半径为R=1.6μm的精细V形槽。  相似文献   

7.
为探究砂轮表面磨粒形态对磨削振动的影响规律,提高磨削加工质量,构建了磨削振动模型并推导磨粒形态-接触刚性-磨削振动的对应关系,开展修整-磨削试验,通过试验分析并验证不同磨粒形态对磨削振动信号RMS和工件表面波纹特征Wa影响的差异。结果表明:在不影响砂轮锋利性的前提下,表征磨粒出露高度的砂轮AH值减小约58%,则RMS值和Wa值分别减小约47%和57%;在相同磨粒出露高度条件下,磨粒钝化的比例约20%,则RMS和Wa分别减小约22%和30%;同时,适度减小磨粒出露高度,磨粒适度钝化,有助于增大磨粒与工件接触面积,改善磨削振动,提高磨削加工质量。且提出的磨削振动模型与试验结果相符。   相似文献   

8.
SiC晶须强化树脂的磨损特性及其在磨削加工中的应用   总被引:1,自引:0,他引:1  
本文使用SiC晶须(细纤维)与酚醛树脂混合,经特殊工艺处理后制成了几种不同晶须含量、排列方向及粉末添加剂的SiC晶须强化树脂。通过对接触材料(模具钢SKD11,HRC60)所进行的磨损特性试验可知,当SiC晶须强化树脂中晶须的含量增高及排列方向与接触材料的摩擦面相垂直时,其磨损量将小于接触材料的磨损量,这表明SiC晶须材料具有磨料的作用。本文利用这一作用将SiC晶须强化树脂制成杯形砂轮,并应用到模具钢SKD11的磨削加工中,能获得高达6000的磨削比和纳米级的加工表面(Ra1.5nm/Ry16nm),进一步表明SiC晶须作为磨料是可行的、实用的。  相似文献   

9.
本文提出了用普通磨料开槽砂轮间断磨与砂页轮磨削陶瓷材料两种加工方案,试验研究了工艺参数对表面粗糙度的影响。结果表明,这两种方法磨削工程陶瓷是完全可行的,在一定的条件下可代替昂贵的金刚石砂轮粗磨与普通砂轮精磨工艺。  相似文献   

10.
陶瓷CBN砂轮的修整对磨粒分布状态和磨削效果的影响   总被引:1,自引:0,他引:1  
陶瓷CBN砂轮的修整对磨粒分布状态和磨削效果的影响450007机械部郑州磨料磨具磨削研究所崔恒泰,夏悦,邱丽花,刘一来陶瓷结合剂CBN砂轮具有气孔,易于修整,因此普遍认为只需采用金刚石笔像对普通磨料陶瓷砂轮那样进行修整即可,也有一些学者认为修整后再用...  相似文献   

11.
单层钎焊金刚石砂轮在制作完成之初由于砂轮基体加工存在误差以及磨粒粒径大小不一等原因造成磨粒等高性不一致,这使其难以在硬脆材料的精密磨削中得到广泛的应用。采用自制的钎焊碟轮对80/100#单层钎焊金刚石砂轮进行了修整试验研究。在修整试验前后跟踪了砂轮磨粒等高性的变化,进行了SiC陶瓷的磨削试验,并观测了工件表面质量的变化情况。试验结果表明:采用此方法能够实现单层钎焊金刚石砂轮的高效精密修整。修整试验结束后砂轮磨粒等高性较好,磨削SiC陶瓷的表面质量得到明显改善,表面粗糙度Ra值达到了0.1μm以下。  相似文献   

12.
目的 减少金刚石砂轮磨削工程陶瓷材料时的砂轮磨损,改善加工表面质量。方法 以人造金刚石为磨料,青铜结合剂为黏结剂,加入一定质量分数的二硫化钼和二氧化钛纳米颗粒作为填充材料,制备出青铜结合剂自润滑金刚石砂轮。利用脉冲激光在金刚石砂轮表面烧蚀出经设计的仿鸟羽减阻几何结构,得到新型仿鸟羽结构自润滑金刚石砂轮。制备了4种不同工况砂轮,传统青铜金刚石砂轮(TGW)、纳米自润滑金刚石砂轮(NGW)、仿鸟羽结构化金刚石砂轮(FGW)、仿鸟羽结构化纳米自润滑金刚石砂轮(FNGW)以对比其磨削性能差异。开展Si C陶瓷磨削实验,研究FNGW磨削机理。从磨削力、表面质量、砂轮磨损3个方面评价FNGW磨削性能。结果 纳米颗粒的加入不会降低砂轮力学性能,砂轮表面的仿鸟羽结构激光成型烧蚀质量较高,对未烧蚀区域没有影响。与TGW相比,FGW除工件表面粗糙度值Ra与砂轮磨损有略微改善外,其他磨削性能都有明显提升。NGW磨削性能都有所提升,但提升效果不太明显。结合二者优势的FNGW,其各磨削性能都有显著提升。其中磨削力最大降低了65.1%,工件表面粗糙度值Ra最大降低了21.5%,砂轮磨损明显减少,有效提升了砂轮的使...  相似文献   

13.
氧化铝陶瓷ELID高效磨削技术的研究   总被引:3,自引:1,他引:3  
陶瓷材料具有优异的机械性能,其应用越来越广泛。然而由于陶瓷的高硬度及其易碎性使其难于加工。在线电解修整磨削技术已经被应用于硬脆材料的超精密加工,由于可以实现砂轮的在线修整,尤其被广泛应用于细粒度砂轮的磨削中。本文在平面磨床上应用铸铁结合剂金刚石砂轮与ELID磨削技术进行高效磨削研究。实验结果表明,在同样的磨削条件下,采用ELID磨削时的磨削力约为使用树脂结合剂砂轮磨削力的2/5~3/5。实验结果说明采用ELID磨削技术加工效率可以得到极大提高。而且,在线电解修整作用可以保持砂轮的锋锐性,有利于保持硬脆材料高效磨削的连续性。  相似文献   

14.
目的解决铝合金手机外壳传统抛光工艺中存在的抛光效率低等问题。方法采用聚氨酯弹性砂轮对6061铝合金进行了磨削加工,使用正交试验研究了磨料粒度、进给速度、切削深度、砂轮线速度对加工表面粗糙度及材料去除率的影响。试验中使用折线走刀方式进行加工,可减轻磨料分布不均带来的影响。使用白光干涉仪测量了加工后表面的粗糙度,通过计算单位时间内工件的质量变化得出了去除率,并通过对结果的综合优化得出了最优工艺参数。结果在选取的16组磨削工艺参数中,可获得的最低表面粗糙度为44.87 nm,最大去除率为0.329 g/min。对表面粗糙度影响最大的因素为磨料粒度,影响最小的因素为进给速度;对材料去除率影响最大的因素为切削深度,影响最小的为进给速度。经过综合优化,最佳工艺参数组合为:砂轮600#,转速2000 r/min,切削深度0.04 mm,进给速度20 mm/min。结论弹性聚氨酯砂轮应用于铝合金磨削可提高加工表面质量,可简化工艺流程,节省备料和安装调整时间,从而提高效率。  相似文献   

15.
小砂轮轴向大切深缓进给磨削以较大切深实现了较高的材料去除率,且使用的砂轮直径比常规磨削用砂轮小很多,我们针对这一特点开展了研究。实验通过改变砂轮转速、工件转速和磨削深度等加工参数,对轴向大切深缓进给磨削加工后的砂轮表面进行了形貌观测和磨损分析。分析表明,砂轮各部分的磨损形式与其在磨削过程中所起的作用有关:砂轮端面是磨削加工的主磨削区,磨粒和结合剂主要发生较大程度的磨损;砂轮圆周面主要对已加工表面进行修磨,因而结合剂和磨粒磨损为主要磨损形式;砂轮拐角作为过渡磨削区,承受的磨削力也比较大,而且由于磨粒与结合剂的结合力相对较小,因此易发生磨粒和结合剂的脱落。  相似文献   

16.
在芯片制程的后道阶段,通过超精密晶圆减薄工艺可以有效减小芯片封装体积,导通电阻,改善芯片的热扩散效率,提高其电气性能、力学性能。目前的主流工艺通过超细粒度金刚石砂轮和高稳定性超精密减薄设备对晶圆进行减薄,可实现大尺寸晶圆的高精度、高效率、高稳定性无损伤表面加工。重点综述了目前超精密晶圆减薄砂轮的研究进展,在磨料方面综述了机械磨削用硬磨料和化学机械磨削用软磨料的研究现状,包括泡沫化金刚石、金刚石团聚磨料、表面微刃金刚石的制备方法及磨削性能,同时归纳总结了软磨料砂轮的化学机械磨削机理及材料去除模型。在结合剂研究方面,综述了金属、树脂和陶瓷3种结合剂的优缺点,以及在晶圆减薄砂轮上的应用,重点综述了目前在改善陶瓷结合剂的本征力学强度及与金刚石之间的界面润湿性方面的研究进展。在晶圆减薄超细粒度金刚石砂轮制备方面,由于微纳金刚石的表面能较大,采用传统工艺制备砂轮会导致磨料发生团聚,影响加工质量。在此基础上,总结论述了溶胶–凝胶法、高分子网络凝胶法、电泳沉积法、凝胶注模法、结构化砂轮等新型工艺方法在超细粒度砂轮制备方面的应用研究,同时还综述了目前不同的晶圆减薄工艺及超精密减薄设备的研究进展,并指出未来半导体加工工具及装备的发展方向。  相似文献   

17.
本文通过电子探针微区分析(EPMA)研究了黏土-长石-硼玻璃系烧熔结合剂刚玉陶瓷磨具的显微结构,分析了磨料中的杂质特征,并对磨料与结合剂之间的反应特点进行了研究.研究表明:烧熔结合剂呈基本均匀的玻璃状态,结合剂与磨料在界面上结合紧密.棕刚玉磨料中的杂质有TiO2、ZrO2、Fe2O3、MgO、Na2O、K2O等,并以T...  相似文献   

18.
高效率磨粒加工技术发展及关键技术   总被引:4,自引:0,他引:4  
高效率磨粒加工是先进制造方法的重要组成部分,集粗精加工与一身,达到可与车、铣和刨削等切削加工方法相媲美的金属磨除率,而且能实现对难磨材料的高性能加工。阐述了高速超高速磨削、快速点磨削、高效深切磨削、缓进给磨削、高速重负荷荒磨以及砂带磨削等高效率磨粒加工技术的国内外的发展及最新研究进展。研究了高效磨削砂轮、主轴及其轴承技术、高效率磨床、磨削液供给技术、砂轮、工件安装定位及安全防护技术以及磨削状态检测及数控技术等实现高效率磨粒加工的关键技术,分析了发展高效率磨粒加工的重要性。  相似文献   

19.
用小直径砂轮超声振动磨削和普通磨削加工SiC陶瓷零件,对比研究砂轮线速度、工件进给速度、磨削深度和超声振幅对其磨削表面质量的影响。结果表明:与普通磨削相比,超声振动磨削的磨粒轨迹相互交叉叠加,工件表面形貌更均匀,表面质量更好。由于超声振动时的磨粒划痕交叉会使磨粒产生空切削,因而降低了其磨削力,使磨削过程更加稳定。超声振动磨削的表面粗糙度和磨削力随砂轮线速度和超声振幅的增加而降低,随工件进给速度和磨削深度的减小而降低。且砂轮线速度、工件进给速度较小时,超声振动磨削的效果更明显。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号