首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
利用有限元方法建立二维模型分析了不同外力下SiC颗粒形状及其尺寸对Al基复合材料力学行为的影响.结果表明,颗粒形状对材料的应力和应变分布的影响很大,颗粒尖角附近的应力和外力方向上基体相应位置的应变均有严重的集中现象.随颗粒角度的减小和外力的增大,颗粒的应力和基体的应变均很快增大.颗粒尺寸较小时,对颗粒的应力的影响小.  相似文献   

2.
利用有限元方法分析了SiC颗粒在不同形状、体积分数时对Al基复合材料挤压过程力学行为的影响,并对试样进行了拉伸试验。结果表明,随着SiC颗粒角度减小,颗粒的应力很快增大,基体的应变呈增大趋势;随SiC颗粒体积分数的增大,颗粒的应力、基体的应变以及该复合材料的弹性模量及屈服强度呈增大的趋势。  相似文献   

3.
利用有限元方法建立轴对称模型分析了SiC颗粒尺寸、体积分数以及温度对铜基复合材料热残余应力的影响.结果表明,随温度的升高,残余应力很快增大;随SiC颗粒尺寸和体积分数的增大,残余应力均呈增大趋势.基体受残余拉应力,颗粒受残余压应力,在结合界面处存在最大残余拉应力.  相似文献   

4.
颗粒增强铁基复合材料拉伸应力场数值分析   总被引:2,自引:4,他引:2  
采用有限元方法分析了颗粒增强铁基复合材料强度和应力与颗粒形状、尺寸以及体积分数的关系。结果表明,颗粒尖锐化会导致颗粒尖端应力集中和基体内的应变集中。同时,颗粒长径比增大,颗粒的应力集中也增大;颗粒尺寸减小和体积分数增加都有助于提高复合材料的强度。  相似文献   

5.
本文基本真实组织图像建立了Ti-6Al-4V合金的微观力学有限元模型,考虑合金双相特征研究了室温单轴拉伸时的微观变形行为。结果表明:外部加载力主要由较硬的β转变组织承担,而塑性变形主要由较软的初生α相承担,即便在相同相内部,不同位置的应力和应变也存在差异。随宏观应变增大,初生α相与β转变组织的应变比、β转变组织与初生α相的应力比首先基本保持不变,而后迅速增大,最后保持稳定。初生α相的体积分数和晶粒尺寸对组成相内部的应变和应力分布有显著影响,随体积分数增大或晶粒尺寸减小,应变比和应力比分别增大和减小。  相似文献   

6.
利用热模拟试验机对铸态Ti40合金在950~1100℃、0.001~1.0s<'-1>条件下进行热压缩试验,研究了应变速率对该合金流动应力和变形组织的影响.结果表明,流动应力随应变速率的增大而增大,不同温度和应变速率的真应力-真应变曲线呈稳态流动型.温度越低,发生动态再结晶的应变速率越小,且动态再结晶晶粒的体积分数和平均晶粒尺寸均随应变速率的减小而增大.在实验热力参数下的动态再结晶程度比较低,最大的体积分数在20%左右,再结晶晶粒的平均尺寸为19.2~47.0μm.从降低能耗和提高加工性能等角度考虑,在950~1000℃,应变速率以小于0.1s<'-1>为宜;在1050℃附近,应变速率以小于1.0s<'-1>为宜;在1100℃附近,应变速率以1.0~0.001s<'-1>较适宜.  相似文献   

7.
基于ANSYS有限元模拟,采用随机分布,建立了不同体积分数(10%、15%、20%、30%)、不同界面过渡区厚度(0、10、20、50和100μm)的ZTA陶瓷颗粒增强高铬铸铁基复合材料模型.结合实验,研究了不同复合材料热处理后的残余应力分布.结果 表明:复合材料界面过渡区域的存在能够降低界面残余热应力.随着界面过渡区尺寸的增加,残余热应力呈现先增大后减小的趋势.颗粒体积分数低时,界面过渡区对复合材料残余热应力影响作用大;颗粒体积分数高时,ZTA颗粒对复合残余应力起主要影响作用.  相似文献   

8.
对TiB_2/Al复合材料的高应变速率超塑性进行了研究。结果表明:材料组织内部生成了尺寸为0.1~2μm,呈六面体形和多边状的TiB_2增强颗粒。搅拌摩擦处理后TiB_2增强颗粒得到细化并且分布均匀。在相同温度下,流变应力对应变速率的变化影响不明显。TiB_2/Al复合材料的伸长率随颗粒体积分数的增大而减小,最大伸长率170%。  相似文献   

9.
采用相场方法模拟了Ti-Al-Nb合金α2→O相转变,探讨了有无外力场作用下弹性应变能对O相颗粒形貌、取向、数目、体积分数及平均尺寸的影响.结果表明:在弹性应变能作用下,颗粒形貌为长方块状,且沿弹性软方向分布;无外力场时,弹性应变能越大,沉淀相越易形核,稳定时颗粒数目越多,体积分数及平均尺寸越小;在外力场作用下,取向有利的变体优先长大,取向不利的变体长大受到抑制;在较小压应力作用下,沉淀相易于形核,稳定时颗粒数目增多,体积分数减小;在拉应力或较大压应力作用下,应力越大,越难于形核,稳定时颗粒数目越少,体积分数越大.  相似文献   

10.
由于基体与增强相之间热膨胀系数的差异,颗粒增强镁基复合材料在制备和热处理过程中,在颗粒和基体的界面处会产生热残余应力。通过建立了随机颗粒模型,利用有限元模拟分析了复合材料降温过程中颗粒形状、颗粒尺寸和颗粒质量分数对基体热残余应力的影响。结果表明:颗粒形状对基体热残余应力影响较大。颗粒形状越接近球形,基体上等效应力越小;单胞、多胞模型基体上热残余应力随颗粒尺寸的增大而增大,相同尺寸下随颗粒质量分数的增大而增大;对于多胞模型基体,颗粒与基体应力的交错会使热残余应力有所降低。  相似文献   

11.
基于修正的剪切滞后模型、Eshelby等效夹杂理论以及Weibull统计分布,发展SiC增强铝基复合材料屈服应力的本构模型.选取多种铝合金,包括工业纯铝、Al-Mg-Si合金、Al-Cu-Mg合金以及Al-Zn-Mg 合金,作为复合材料的基体材料进行屈服应力的测试,以验证模型的准确性.模型考虑变形过程中SiC颗粒失效(包括颗粒脱粘和颗粒断裂)对复合材料屈服应力的影响.结果表明:复合材料的屈服应力随着SiC颗粒体积分数的增加而增加,但随着SiC颗粒尺寸的增加而降低;该力学模型比传统的修正剪切滞后模型更加准确,这表明SiC颗粒失效对复合材料的屈服应力产生重要的影响.  相似文献   

12.
有限元模拟SiC增强Al基复合材料的力学行为   总被引:1,自引:0,他引:1  
采用有限元方法和轴对称单胞模型模拟了增强体(SiC)形状、体积分数以及不同基体类型对铝基复合材料力学行为的影响。模拟结果表明:增强体的加入会阻碍基体的塑性流变,使基体内发生非均匀变形,在增强体尖角处出现应力集中;椭圆柱形增强体对基体塑性变形的阻力最大,传递载荷的能力最强,因此强化效果最好。在一定范围内,随着增强体体积分数的增加,基体与增强体之间的比表面积增大,有利于载荷的传递;增强体体积分数的增加导致颗粒间距减小,几何必须位错自由运动的路径减少,复合材料的强度也随之增加。此外,不同类型基体自身的塑性流变能力不同,Al-Zn-Mg基体强度最高,在拉伸变形过程中,受到增强体的阻碍作用最大,会有更多的载荷从基体传递到增强体,以Al-Zn-Mg为基体的复合材料的强度最高。  相似文献   

13.
颗粒形状对SiCp/LD2复合材料塑性的影响   总被引:12,自引:0,他引:12  
秦蜀懿  王文龙  张国定 《金属学报》1998,34(11):1193-1198
采用经钝化处理的SiC颗粒作为增强体制备的SiCp/LD2复合材料,与普通SiCp/LD2相比,材料明显提高了塑性,有限元与拉伸断口的扫描电镜分析表明,材料经T6处理后,断裂机制以颗粒断裂为主,塑性得以提高的原因主要是颗粒尖角钝化后,降低了尖角处热残余应变集中,并降低了颗粒尖角部在外加应低时断裂的可能性;而材料未经T6处理时,断裂机制以基体失效为主,塑性提高主要源于尖角处热残余应变集中的降低,因则  相似文献   

14.
SiCw和纳米SiCp混杂增强铝基复合材料的制备与评价   总被引:7,自引:2,他引:7  
采用湿成型法制备了体积分数可以调节的碳化硅晶须与纳米碳化硅颗粒混杂的预制块,确定了挤压铸造法制备混杂增强铝基复合材料的工艺参数.通过扫描电镜和透射电镜分析发现:复合材料中晶须与纳米颗粒分布均匀,并与基体合金的界面结合良好,无界面反应物和孔洞;与基体合金相比,混杂增强复合材料的抗拉强度和弹性模量明显增高,延伸率降低;在晶须体积分数一定时,随纳米SiC颗粒体积分数的增加,复合材料的抗拉强度升高.  相似文献   

15.
改善颗粒增强金属基复合材料塑性和韧性的途径与机制   总被引:22,自引:5,他引:17  
评述了影响颗粒增强金属基复合材料塑性和韧性的各种因素,在此基础上深入研究了颗粒形状对SiCp/LD2复合材料塑性和断裂韧性的影响规律。采用有限单元法分析不同形状的SiC颗粒增强的LD2复合材料的微区力学环境和整体力学行为,结果表明颗粒的尖锐化导致基体内应变集中和颗粒尖端断裂的可能性加剧,因而降低材料的塑性;而在外加载荷的作用下,由于复合材料基体整体均处于较高的加工硬化状态,因此颗粒形状对材料断裂韧  相似文献   

16.
This article examined the effects of particle size and extrusion on the microstructures and mechanical properties of SiC particle-reinforced pure aluminum composites produced by powder metallurgy method. It has been shown that both particle size and extrusion have important effects on the microstructures and mechanical properties of the composites. The SiC particles distribute more uniformly when the ratio of the matrix powder size and SiC particle size approaches unity, and the smaller-sized SiC particles tend to cluster easily. The voids are found to coexist with the clustered and large-sized SiC particles, and they significantly decrease the density and mechanical properties of the composites. Extrusion can redistribute the SiC particles in the matrix and decrease the number of pores, thus make the SiC particles distribute more uniformly in the matrix, and enhance the interfacial bonding strength. The decrease in the SiC particle size improves the tensile strength and yield strength, but decreases the ductility of the composites.  相似文献   

17.
采用搅拌铸造法制备SiC体积分数为5%、10%和15%的颗粒增强AZ91镁基复合材料(SiCp/AZ91)。复合材料经过T4处理后,于350°C以固定挤压比12:1进行热挤压。在铸态复合材料中,颗粒在晶间微观区域发生偏聚。热挤压基本上消除了这种偏聚并有效地改善颗粒分布。另外,热挤压有效地细化基体的晶粒。结果表明:热挤压明显提高复合材料的力学性能。在挤压态复合材料中,随着SiC颗粒含量的升高,基体的晶粒尺寸减小,强度和弹性模量升高,但是伸长率降低。  相似文献   

18.
The main aim of this work was to study the effects of particle size, particle volume fraction, and matrix strength on the long fatigue crack growth resistance of two different grades of Al alloys (Al2124-T1 and Al6061-T1) reinforced with SiC particles. Basically, it was found that an increase in particle volume fraction and particle size increases the fatigue crack growth resistance at near threshold and Paris regimen, with matrix strength having a smaller effect. Near final failure, the stronger and more brittle composites are affected more by static modes of failure as the applied maximum stress intensity factor (K max) approaches mode I plane strain fracture toughness (K IC).  相似文献   

19.
铸造SiCp/2024复合材料微观结构与强化机制的研究   总被引:5,自引:0,他引:5  
研究了SiC体积分数分别为5,10,15和20%的2024Al基复合材料在峰值时效态下的微观结构和强化机制透射电镜观察和Vickers硬度测定表明:增强相的加入使复合材料基体中的位错密度升高,亚晶尺寸略有下降,但基体的硬度却无明显升高拉伸试验发现,弹性模量和加工硬化指数随SiC体积分数增加而显著提高,初始流变应力先下降后升高本文认为由增强相导致的应力集中和基体形变的高约束度是控制SiC_p/2024复合材料形变与强化的两个主要因素  相似文献   

20.
SiC纳米颗粒增强A356铸造合金的表征(英文)   总被引:2,自引:0,他引:2  
通过搅拌铸造制备SiC纳米颗粒增强A356铝合金复合材料,并研究其显微组织和力学性能。密度测量发现试样的孔隙度较低,且孔隙度随SiC颗粒体积分数的增加而增加。通过光学显微镜和透射电镜观察材料的显微组织,发现弥散的颗粒分布均匀。材料的拉伸强度和弹性模量随加入纳米SiC颗粒的增加而提高,而延展性有所降低。当SiC纳米颗粒的加入量为3.5%时,复合材料的屈服强度和极限抗拉强度达到最高。断口分析表明,拉伸断裂试样为相对韧性断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号