首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
研究了淬火工艺对粉末冶金超高碳不锈钢的微观组织与力学性能的影响。高碳铬粉末冶金不锈钢经900~1200 ℃淬火并于200 ℃回火后,碳化物主要为M7C3,少部分为MC,随淬火温度升高,马氏体中固溶碳增大,硬度与抗弯强度升高;经1150 ℃淬火与低温回火后,力学性能达到最佳,硬度为59 HRC,冲击吸收能量为18.9 J,抗弯强度为3079 MPa,碳化物均匀弥散分布于基体中,其中M7C3相平均尺寸约为2 μm,体积分数为17%,MC相尺寸为0.5 μm,体积分数为2%;经1200 ℃淬火后残留奥氏体体积分数为35%,导致硬度下降。  相似文献   

2.
对经淬火+回火后的P92钢进行650 ℃不同时间时效处理。利用光学显微镜、扫描电子显微镜、透射电子显微镜对淬火和不同时间时效处理试样进行组织及析出相观察及分析;采用洛氏硬度计对其进行硬度测试。结果表明,P92钢淬火组织为板条马氏体+残留奥氏体+M23C6+MC。经不同时间时效处理后的基体组织均为回火托氏体,同时存在有M3C、MC、M23C6等碳化物。时效150 h时Laves相开始析出,且随着时效时间延长,析出物尺寸增大,P92钢的硬度不断降低。时效初始硬度约为24 HRC,时效250 h后硬度约为20 HRC。  相似文献   

3.
通过扫描电镜(SEM)、电子背散射衍射(EBSD)、透射电镜(TEM)、X射线衍射仪(XRD)、热膨胀仪、洛氏硬度计等手段研究了弹簧钢55SiCr的组织和相变点以及残留奥氏体和碳化物在热处理过程中的组织演变。结果表明:55SiCr弹簧钢淬火后残留奥氏体以块状分布在基体上;随回火温度的升高,残留奥氏体减少并呈粒状和薄膜状分布;C在残留奥氏体中富集,使其稳定性增强;Si抑制了碳化物的析出,提高了残留奥氏体的稳定性。低温回火时,Si延缓了渗碳体析出;高温回火时,C原子扩散速率提高,促进渗碳体析出,引起体积的收缩。慢速加热回火时,C有足够的时间扩散,从而促进渗碳体的形成,使渗碳体的形成温度提前;快速加热回火时,C来不及扩散,抑制了渗碳体的析出。回火加热速率一样时,试验钢的硬度随回火温度的提高而下降。当回火温度为400 ℃时,硬度值最大为51 HRC;当回火温度为650 ℃时,硬度值最小为37 HRC。当加热速率为0.1 ℃/s时,硬度值最小为33 HRC;当加热速率为200 ℃/s时,硬度值最大为40 HRC。  相似文献   

4.
采用扫描电镜、透射电镜、X射线衍射仪、显微硬度计、拉伸试验机和冲击试验机等分析手段对C61齿轮钢试样经1000 ℃淬火+回火处理后组织和碳化物的析出行为及力学性能进行了研究。结果表明,试验钢在淬火和深冷状态下,一次碳化物基本溶解,基体为板条马氏体组织,此时固溶强化作用提供了较好的强韧化基础。当回火温度为420 ℃时,析出的M3C渗碳体为其提供了较高的强度,但这种析出相的存在对冲击性能具有较大的损伤;M3C渗碳体会在482 ℃回火时溶解,10~20 nm尺寸的棒状M2C碳化物在板条马氏体内的弥散析出,提供了较高强度的同时改善了冲击性能。随着回火温度的继续升高,大量逆转变奥氏体生成,不仅有效提高冲击性能,同时强度下降也更为明显;且M2C碳化物粗化长大,第二相的强化作用降低。综合得出,试验钢在482 ℃的回火条件下能达到较好的强韧化匹配,抗拉强度和屈服强度分别为1781 MPa和1546 MPa,冲击吸收能量为97 J,硬度峰值为52 HRC。  相似文献   

5.
回火温度对M50钢组织及摩擦磨损性能影响   总被引:1,自引:0,他引:1  
采用X射线衍射仪、扫描电镜、洛氏硬度计、摩擦磨损试验机等研究了不同温度(160、300和540℃)回火处理对淬火态M50钢的微观组织、硬度及摩擦磨损性能的影响.结果 表明:经1090℃淬火后M50钢显微组织由马氏体、碳化物及残留奥氏体组成,硬度为64.5 HRC,残留奥氏体含量为18%;回火处理使M50钢组织中马氏体转变为回火马氏体,随着回火温度的升高,试验钢硬度先降低再升高,其中,300℃回火时试验钢的硬度较低,540℃回火出现二次硬化现象,硬度值较大,残留奥氏体含量较低约4%.摩擦磨损试验结果表明:540℃回火处理可以有效降低试验钢的摩擦系数和磨损率,其磨损机制为轻微磨粒磨损伴随粘着磨损.  相似文献   

6.
采用万能拉伸试验机、冲击试验机、光学显微镜、XRD、SEM和TEM等对高氮不锈轴承钢Cronidur 30不同回火温度下的显微组织和力学性能进行了研究和分析。结果表明:高氮不锈轴承钢Cronidur 30在150~500 ℃回火时的显微组织为回火马氏体+碳氮化物+残留奥氏体,高于550 ℃回火后基体逐渐转变为回火索氏体,同时析出相逐渐聚集、长大;随着回火温度的升高,强度和硬度总体上呈现先下降后升高再下降的过程,而冲击性能反之,在450 ℃回火时,碳化物M23C6和氮化物Cr2N析出明显,此时产生二次硬化现象,其抗拉强度可达2133 MPa。400 ℃回火试样发现有极少量富Cr-Fe-Mo的析出相(σ相),显著降低其冲击性能,500 ℃回火时残留奥氏体分解、转变导致冲击性能略有降低。  相似文献   

7.
应用Fe-Cr-W-Mo-V-Si-Mn-Ni-C系相平衡热力学计算,根据Cr-W-Mo-V高碳合金钢中碳化物在不同退火温度下的变化规律,给出各温度下的钢中相结构和相成分;并根据不同奥氏体化温度下的基体成分,推导合适的热处理工艺,并预测淬火硬度和回火硬度,最终确定试验钢的最佳化学成分。结果表明,试验钢在830℃退火,析出碳化物由M23C6、M6C和MC三种类型组成,其尺寸为0.2~0.5μm;在880℃淬火,未溶碳化物平均尺寸0.33μm。该钢在890℃淬火硬度为65.8 HRC,240℃回火时硬度为62.4~63.8 HRC,具有较高的抗回火性。实践表明,高碳合金钢的合金设计计算与少量的试验结合可以达到预期的目的。  相似文献   

8.
研究了不同淬火、回火温度对Cr8钢组织和性能的影响。结果表明,Cr8钢1050℃淬火组织为马氏体、碳化物和少量残留奥氏体。当Cr8钢在1050℃淬火,525℃回火后钢的硬度达到57 HRC,并且具有良好的韧性。  相似文献   

9.
采用OM、EBSD和TEM等分析方法对超高强含Cu海工钢经850℃淬火+不同温度回火处理后组织和力学性能进行了研究。结果表明,试验钢在425℃回火时出现硬度峰值435 HV5,这是基体中细小弥散分布的Cu(5 nm)粒子和少量的碳化物粒子的协同强化作用。在525℃过回火状态下,试验钢基体中Cu粒子发生粗化(6.5 nm),试验钢的强度下降,并且此时试验钢中脆化相M3C渗碳体完全溶解转化为了更稳定的M2C析出相、大角度晶界密度的增加和薄膜状逆转变奥氏体的含量增加等因素,使得-40℃时的冲击吸收能量KV2从475℃回火的6 J提升至525℃回火的180 J,低温韧性得到了显著改善。随着回火温度的再次升高,马氏体基体软化更为明显,且Cu粒子和M2C碳化物进一步粗化,试验钢的强度明显降低。试验钢在525℃回火能获得良好的强韧性匹配,抗拉强度和屈服强度分别为1188 MPa和1119 MPa,-40℃时的冲击吸收能量KV2为180 J。  相似文献   

10.
利用金相显微镜、洛氏硬度计等方法,研究了淬回火工艺对3.4wt%C高碳高铬铸铁组织及硬度的影响。结果表明:随淬火温度在960~1100℃逐步升高,基体由铸态的奥氏体转变为马氏体及残余奥氏体,一次碳化物及共晶碳化物未发生转变,二次碳化物逐渐减少,残余奥氏体逐渐增多;硬度先升高后降低,在淬火温度为1050℃时,硬度达到最高值64 HRC。随回火温度在450~650℃升高,基体组织由回火马氏体逐渐转变为回火索氏体,二次碳化物增多粗化,硬度逐步降低;最佳热处理工艺为1050℃/1 h空淬+510℃/1 h空冷回火,试样综合性能较好。  相似文献   

11.
通过SEM、TEM和XRD分析,结合拉伸试验、断裂韧度试验和硬度测试,研究了淬火温度对新型齿轮钢组织及力学性能的影响。结果表明,经850~1050℃淬火+深冷+回火,试验钢的抗拉强度、屈服强度和洛氏硬度均随着淬火温度的升高先升高后逐渐降低,在900℃时分别达到峰值,此时抗拉强度为1483 MPa,断裂韧度则在淬火温度为1000℃时达到最高,为62.4 MPa·m1/2。淬火温度低于1000℃时,试验钢的晶界及马氏体板条上存在富Mo型M6C碳化物,碳化物随淬火温度的升高逐渐溶解,在1000℃时未再观察到未溶相。试验钢的原始奥氏体晶粒尺寸随淬火温度的升高先缓慢增大,当温度超过1000℃时,原始奥氏体晶粒及组织快速粗化,断裂韧度和断面收缩率也出现大幅度降低。  相似文献   

12.
通过1000~1200 ℃间隔50 ℃的系列加热温度对5Cr15MoV马氏体不锈钢进行空冷淬火试验,并采用光学显微镜、EBSD和洛氏硬度计对不同温度淬火后组织和硬度进行检测,研究了淬火温度对试验钢组织、晶粒尺寸、残留奥氏体含量以及硬度的影响。结果表明,试验钢淬火后组织为马氏体+未溶合金碳化物+残留奥氏体。随着淬火温度升高,马氏体板条尺寸增大,未溶碳化物量逐渐减少直至消失,残留奥氏体含量先增加后减少。试验钢的硬度变化趋势为先增加后显著降低,在淬火温度为1050 ℃达到最大值60.8 HRC。试验钢硬度主要是马氏体的含碳量、晶粒尺寸、残留奥氏体含量和碳化物含量综合作用的结果。  相似文献   

13.
石成朋  刘平  张柯  李伟  杨旗  郝庆国 《金属热处理》2020,45(11):157-162
对退火态高氮不锈轴承钢进行真空高压气淬并深冷后在不同温度下回火空冷处理,采用光学显微镜、X射线衍射仪、场发射环境扫描电镜、场发射透射电镜、洛氏硬度计和万能材料试验机,研究并分析了不同回火温度对高氮不锈轴承钢显微组织与力学性能的影响。结果表明:当回火温度由180 ℃升高到550 ℃时,硬度、抗拉强度及屈服强度呈现先下降后上升再迅速下降的变化趋势;试验钢降碳增氮,组织中没有粗大的共晶碳化物存在。当回火温度为500 ℃时,基体组织为回火索氏体,碳化物M23C6和氮化物Cr2N细小弥散均匀分布于基体上;在500 ℃回火时出现了二次硬化,强度和硬度达到峰值,这与碳氮化物弥散强化有关。采用1050 ℃真空气淬60 min+深冷处理(-100 ℃×2 h)+500 ℃空冷2 h回火工艺可以获得良好的综合力学性能。  相似文献   

14.
研究了锯片基材75Cr1钢不同热处理工艺下的组织、晶粒度、碳化物分布以及力学性能。结果表明:780~840 ℃之间淬火,组织为细小的针片马氏体+少量残留奥氏体。随淬火温度升高,硬度略有升高,但均在63 HRC水平附近,晶粒度由10级降至8级,晶粒不均匀程度也更加明显;随回火温度升高,组织由回火屈氏体转变为回火索氏体,细小的颗粒状碳化物增多。800 ℃淬火+540 ℃回火,75Cr1钢组织为回火索氏体,细小碳化物弥散分布,硬度36.5 HRC,具有良好的强度和塑韧性匹配。  相似文献   

15.
通过对M390粉末冶金不锈钢进行不同温度下的平衡相计算和真空气淬+低温回火处理,研究了淬火温度对回火后显微组织和力学性能的影响。结果表明,随着淬火温度的升高,M390钢回火后的碳化物尺寸不断长大,单位面积的颗粒数量减少而所占面积分数提高,碳化物分布均匀性降低。硬度随淬火温度的升高呈先上升后略微下降趋势,在1130 ℃淬火时达到最大值60.2 HRC,回火后降为58.5 HRC。抗弯强度受淬火温度的影响不大,为4000 MPa级水平。为获得良好性能,淬火温度应控制在1200 ℃以下,1130~1180 ℃真空气淬+200 ℃低温回火是刀剪用M390钢的最佳热处理工艺制度。  相似文献   

16.
利用洛氏硬度计及场发射扫描电镜等研究了奥氏体化温度和回火温度对热锻模具用钢5Cr5Mo2V组织和性能的影响。结果表明:试验钢经过不同温度的淬火和回火处理后,组织均为回火马氏体+残留奥氏体+碳化物。当5Cr5Mo2V钢在920~1030 ℃淬火时,随淬火温度升高硬度值增加并于1030 ℃达到最大值62.53 HRC,之后硬度值趋于稳定,且在1030 ℃淬火时晶粒较为细小,超过1030 ℃淬火晶粒开始粗化;试验钢在480~550 ℃回火时,硬度值随回火温度升高逐渐增加,并于550 ℃出现二次硬化峰值,但在此温度下试验钢的冲击性能为最低,此后随回火温度升高冲击性能逐渐增加,当回火温度为600 ℃时,试验钢在维持较高硬度(49 HRC)的同时,冲击吸收能量可达21 J,故5Cr5Mo2V钢的最佳热处理工艺为:1030 ℃淬火30 min后油冷,随后在600 ℃回火(2 h)2次空冷。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号