首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
Ni nanopowders were successfully prepared in large quantities by anodic arc discharged plasma method with homemade experimental apparatus in inert gas. The particle size, microstructure and morphology of the particles were characterized via X-ray diffractometry (XRD), transmission electron microscopy (TEM) and the corresponding selected area electron diffractometry(SAED). The specific surface area and pore parameters were investigated by nitrogen sorption isotherms at 77 K with Brunauer-Emmett-Teller(BET) equation and Barrett-Joyner-Halenda (BJH) method. The chemical compositions were determined by X-ray energy dispersive spectrometry(XEDS) and element analysis. The experimental results indicate that this method is convenient and effective, and the nanopowders with uniform size, higher purity, weakly agglomerated and spherical chain shape are gotten. The crystal structure of the samples is FCC structure as the bulk materials, the particle size distribution ranges from 20 to 70 nm, and the average particle size is about 46 nm obtained by TEM and confirmed by XRD and BET results. The specific surface area is 14.23 m^2/g, specific pore volume is 0.09 cm^3/g and average pore diameter is 23 nm.  相似文献   

2.
Copper nanoparticles were successfully prepared in large scale by means of anodic arc discharging plasma method in inert atmosphere. The particle size, specific surface area, crystal structure, and morphology of the samples were characterized by X-ray diffraction (XRD), BET equation, transmission electron microscopy (TEM), and the corresponding selected area electron diffraction (SAED). The experimental results indicate that the crystal structure of the samples is fcc structure the same as that of the bulk materials. The specific surface area is 11 m^2/g, the particle size distribution is 30 to 90 nm, and the average particle size is about 67 nm obtained from TEM and confirmed from XRD and BET results. The nanoparticles with uniform size, high purity, narrow size distribution and spherical shape can be prepared by this convenient and effective method.  相似文献   

3.
Copper nanopowders were successfully prepared by anodic arc discharging plasma method with home-made experimental apparatus.The effects of various processing parameters on the particle size of Cu nanopowders were investigated in the process,and the optimum processing parameters were obtained.In addition,the morphology,crystal structure,particle size distribution of the nanopowders were characterized via X-ray diffraction(XRD),transmission electron microscopy(TEM)and the corresponding selected area electron diffraction(SAED).The experimental results show that the crystal structure of the samples is the same fcc structure as that of the bulk materials.The processing parameters play a major role in controlling the particle size.The particle size increases with the increase of the arc current or gas pressure.  相似文献   

4.
1. Introduction Metal nanoparticles exhibit novel physical and chemical properties owing to the small size effect, surface effect, quantum size effect, and quanta tun-nel effect [1-4]. In recent years, the research and de-velopment for metal nanoparticles have attracted significant interest and is still the subject of intense investigation owing to their intriguing properties and various potential applications [5-7]. Because the properties depend strongly on the details of particle size, speci…  相似文献   

5.
Anatase titanium dioxide is an active photocatalyst, however, it is difficult to be immobilized on the substrate. The crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation. The film was then used for photocatalysis via the methyl orange degradation method. The effects of anodization voltage, pH value, TiO2 film area and degradation time on the photocatalyst were investigated respectively by UV-visible spectrum. It was indicated that the TiO2 film prepared by anodic oxidation at 140 V had the best photocatalysis capability and the degradation of methyl orange was accelerated with acid addition.  相似文献   

6.
Pure Ni nanopowders were successfully prepared by the method of anodic arc discharged plasma with homemade experimental apparatus. The particle size, mircostructure and morphology of the particles by this process were characterized via X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED); The specific surface area and pore parameters were investigated by multi-point full analysis of nitrogen adsorption-desorption isotherms at 77K by BrunauerEmmett-Teller (BET) surface area analyzer; The chemical composition were determined by X-ray energy dispersive spectrometry (XEDS) equipped in SEM and element analyze instrument. The experiment results indicate that the samples by this method with high purity, the crystal structure of the particles is as same as the bulk material, is fcc structure, with average particle sizes about 47nm, ranging from 20 to 70nm, and distributed uniformly in spherical chain shapes, the specific surface areavis 14.23m^2/g, pore volume of pore is 0.09cm^3/g and average pore diameter is 23nm.  相似文献   

7.
MoS2 coatings were prepared by unbalanced bipolar DC magnetron sputtering under different argon pressures and for different deposition times, and the structure and morphology of MoS2 coatings were determined and observed respectively by X-ray diffractometry and scanning electron microscopy. The results show that at lower argon pressures of 0.15 Pa and 0.40 Pa, MoS2 coatings are formed with the (002) basal plane parallel to the surface, whereas the coating deposited at the argon pressure above 0.60 Pa has the (002) basal plane perpendicular to the surface. Two stages can be classified for the formation of MoS2 coating. At the initial stage of coating formation, the (002) basal plane with S-Mo-S layer structure grows on the substrate whatever the argon pressure is. And then the coating under 0.40 Pa argon pressure still grows with (002) laminate structure, but the coatings under 0.88 Pa and 1.60 Pa argon pressures turn to grow with the mixed basal and edge orientations. The morphology and structure of MoS2 coatings are highly related to their growth rate and the energy of sputtered particles.  相似文献   

8.
Titanium nitride (TIN) films with nanostructure were prepared at ambient temperature on a (111) silicon substrate by the filtered cathodic arc plasma (FCAP) technology with an in-plane "S" filter. The effects of deposition parameters on the grain size, texture and nano-hardness of the films were systematically investigated. The grain size was obtained through calculation using the Scherrer formula and observed by TEM. The results of X-ray diffraction and electron diffraction indicated that increasing either negative substrate bias or argon flow promoted the formation of (111) preferred orientation. High argon flow leads to biaxial texture. The micro-hardness of the TIN films as a function of grain size showed a behavior according to the Hall-Petch relation under high argon flow.  相似文献   

9.
10.
采用直流电弧等离子体设备(自行研制)制备金属氮化物纳米粒子,探讨了直流电弧等离子体条件下(高的热性能、高的化学反应活性、高的冷却速率、可控的气氛)氮化反应机理和金属氮化物纳米粒子的成核、生长机制.研究结果表明:反应温度和过饱和度及反应气体压力是影响成核、生长速率与临界成核半径的主要因素,冷却介质是影响产物粒度的关键因素.调整适当的工艺参数,可制备出平均粒径小于20 nm的AlN和小于80 nm的TiN纳米粒子,粉末粒径分布窄,形貌均匀且无团聚.  相似文献   

11.
阳极弧等离子体制备镍纳米粉   总被引:22,自引:3,他引:22  
采用自行研制的实验装置,用阳极弧放电等离子体方法制备了高纯镍纳米粉末。利用X射线衍射(XRD)、透射电子显微镜(TEM)和相应选区电子衍射(ED)、BET吸附等对样品的成分、形貌、晶体结构、晶格常数、粒度及其分布、比表面积进行了分析。建立了关于金属超微粒产生过程的近似模型,分析了纳米粉的形成和生长机制,并对整个工艺过程影响纳米粉性能的各种工艺参数进行了理论探讨。结果表明:所制得的镍纳米粉纯度高,晶格结构与相应的致密体相同,为fcc相结构,平均粒径为47nm,粒径范围在20~70nm,比表面积为14.23m^2/g,呈规则的球形链状分布,并发现纳米晶体的晶格常数发生膨胀。  相似文献   

12.
阳极弧等离子体制备镍纳米粉的机理研究   总被引:1,自引:0,他引:1  
根据会属结晶的热力学和动力学理论,对采用阳极弧放电等离子体方法制备金属纳米粉的生长过程建立了一个近似的理论模型。研究了等离子体的产生、金属的蒸发、晶核的形成和生长机理。对影响纳米粉性能的各种工艺参数进行了理论分析。并利用X射线衍射(XRD)、透射电子显微镜(TEM)和相应选区电子衍射(ED)对样品的晶体结构、形貌、粒度及其分布进行表征。结果表明:采用阳极弧等离子体法制备的球形镍纳米粒予纯度高,晶格结构与相应的块体物质相同,为fcc结构的晶态,平均粒度为16nm,粒度范围分布在10nm~40nm。电源功率、电弧电流、气体压力及冷却温度是影响晶核的形成和生长的主要因素。通过适当调整各项工艺参数,可有效地控制粒子的粒度。  相似文献   

13.
采用约束弧等离子体方法成功制备了高纯铝纳米粉末,利用X射线衍射(XRD)、透射电镜(TEM)和相应选区电子衍射(SAED)对样品的晶体结构、形貌、粒度进行性能表征。对约束弧等离子体方法制备金属纳米粉的形成和长大过程进行了分析,并对制备过程中工艺参数(气体种类和压力、电弧电流等)对纳米粉产率及粒度的影响规律进行了讨论。实验结果表明:本法所制备的铝纳米粉末的晶体结构为fcc结构的晶态,呈规则的球形。适当控制某些工艺参数就能制取粒径在20~100 nm的纳米粉,在其它工艺参数一定时,随着工作气压升高、电流强度的增加,产率和平均粒径都随之增大。  相似文献   

14.
工艺参数对阳极弧放电等离子体制备镍纳米粉的影响   总被引:7,自引:1,他引:7  
在Ar惰性保护气氛中,采用阳极弧放电等离子方法用自行研制的装置制备出了高纯Ni纳米粉末。研究了在制备过程中电弧电流、气体压力等工艺参数对纳米粉产率及粒度的影响。利用XRD、TEM对制得的样品的形貌、晶体结构、粒度及其分布进行测定。结果表明,适当控制某些工艺参数就能制取粒径范围在20nm~100nm的纳米粉,在其它工艺参数不变条件下,气压升高或电弧电流增大,都会使粒度增大,产率提高。  相似文献   

15.
由于具备较高的热导率,铜/金刚石复合材料已成为应用于电子封装领域的新一代热管理材料。采用放电等离子烧结工艺(SPS)成功制备含不同金刚石体积分数的Cu/金刚石复合材料,研究复合材料的相对密度、微观结构均匀性和热导率(TC)随金刚石体积分数(50%、60%和70%)和烧结温度的变化规律。结果表明:随着金刚石体积分数的降低,复合材料的相对密度、微观结构均匀性和热导率均升高;随着烧结温度的提高,复合材料的相对密度和热导率不断提高。复合材料的热导率受到金刚石体积分数、微观结构均匀性和复合材料相对密度的综合影响。  相似文献   

16.
采用约束弧等离子体技术制备碳包覆铁纳米颗粒,利用X射线衍射、透射电子显微镜、高分辨透射电子显微镜、X射线能量色散分析谱仪和N2吸附等测试手段对样品的化学成分、形貌、微观结构、比表面积和粒度等特征进行表征分析。结果表明:采用约束弧等离子体技术制备的碳包覆纳米金属颗粒具有明显的核?壳结构,内核金属为体心立方结构的铁,外壳为无定形碳。颗粒大多呈球形和椭球形,粒径分布在15~40nm范围内,平均粒径为30nm,内核粒径为18nm,外层碳的厚度为6~8nm,比表面积为24m2/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号