首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-resolution electron microscopy has been applied to study the dislocation redistribution between Ge and GeSi layers at the atomic scale. Ge0.3Si0.7 (30 nm in thickness) and Ge0.5Si0.5 (10 nm) buffer layers buried between the Si(0 0 1) substrate and the plastically relaxed Ge layer 0.5 μm thick remain in a metastable (stressed) state during the growth of Ge/Ge-seed/GexSi1?x/Si(0 0 1) (x  0.3–0.5) heterostructures, though the buffer layer thickness is several times greater than the critical value for insertion of misfit dislocations (MDs). An ordered grid of edge MDs is observed only on the Ge/GeSi interface; the mean distance between the MDs is ~10 nm (which is close to the equilibrium value for the non-stressed Ge/Si system). After 30 min of annealing at 700 °С, the Ge0.3Si0.7 buffer layer still remains in a metastable state, and the edge MDs are located only on the Ge/GeSi interface with the same dislocation spacing of ~10 nm. At the same time, approximately one-half of MDs in the structure with the Ge0.5Si0.5 buffer layer passes through the Ge/GeSi interface to the GeSi/Si(0 0 1) interface, and the buffer layer plastically relaxes by almost 100%. An assumption is put forward that there exists a barrier for the MD transition from the Ge layer to the GeSi layer, which results in MD trapping on this interface. The magnitude of this barrier depends on the difference in the compositions of the main Ge (x = 1) film and the GexSi1?x buffer layer, and increases with increasing this difference.  相似文献   

2.
《Acta Materialia》2007,55(7):2509-2518
A NASAIR-100 superalloy single crystal was tested in tension creep at 1000 °C at a stress of 148 MPa, for a time period of 20 h and to a strain of 1.1%. Analysis of the resulting dislocation structures after rafting was completed reveals the frequent presence of all three types of a〈0 1 0〉 dislocations in the γ′ particles. Two of these families experience no resolved forces due to the applied stress. It is proposed that these a〈0 1 0〉 dislocations form as a result of the combination of two dissimilar a/2〈0 1 1〉 dislocations entering from γ channels. The possible driving forces for the movement of these a〈0 1 0〉 dislocations are discussed, and a novel recovery mechanism during creep of rafted microstructures is introduced on the basis of these observations.  相似文献   

3.
《Acta Materialia》2007,55(2):705-714
Molecular dynamics (MD) simulations are used to model dislocation nucleation at or near symmetric tilt bicrystal copper interfaces with 〈1 0 0〉 or 〈1 1 0〉 misorientation axes. MD simulations indicate that orientation of the opposing lattice regions and the presence of certain structural units are two critical attributes of the interface structure that affect the stress required for dislocation nucleation. Boundaries that contain the E structural unit are found to emit dislocations at comparatively low tensile stress magnitudes. A simple model is proposed to illustrate the impact of interfacial porosity and stresses acting on the slip-plane in non-glide directions on tensile interface strength. Accounting for interfacial porosity through an average measure is found to be sufficient to model the tensile strength of boundaries with a 〈1 0 0〉 misorientation axis and many boundaries with a 〈1 1 0〉 misorientation axis.  相似文献   

4.
The gamma surfaces in the pyramidal I {1 ?1 0 1} and II {1 1?2 2} planes for hexagonal close packed Mg have been calculated using two embedded-atom-method potentials and by ab initio methods, and reasonable agreement is obtained for key stacking fault energies. Screw and edge 〈c + a〉 dislocation core structures and Peierls stresses at 0 K and finite temperature have been examined using the embedded-atom-method potentials. Screw 〈c + a〉 dislocations glide in the {1 ?1 0 1} pyramidal plane I, and in the prism plane for larger stresses, but not in the {1 1 ?2 2} plane as observed in experiments. However, the preference for pyramidal I glide correlates well with the gamma surfaces. New low energy edge 〈c + a〉 dislocation cores were found in addition to the sessile Type I and Type III cores observed in previous simulations while the Type II core was not observed. The lowest energy core is a glissile core that lies in the {1 1 ?2 2} plane and has a 3 nm long {1 1 ?2 1} twin embryo, rather than the sessile Type III core found in previous simulations. As the temperature increases from 0 to 300 K, the Peierls stresses in compression/tension drop from ?80 MPa/+140 MPa and ?140 MPa/+220 MPa for the most glissile screw and edge dislocations to ?5/+2.5 MPa and ?27/+5 MPa, and dislocation glide changes from kink motion to face-centered-cubic-like motion. At 300 K and under an applied stress, almost all the edge cores found at low temperature transform into a glissile core denoted IT, which glides at low stresses. Thus, at 300 K both screw and edge 〈c + a〉 dislocations were found to glide at stresses smaller than the ~40 MPa measured experimentally.  相似文献   

5.
《Acta Materialia》2007,55(5):1791-1800
Atomic structures in a Σ = 9{2 2 1} tilt grain boundary (GB) grown by Bridgman solidification of a tricrystal are determined through high-resolution transmission electron microscopy and numerical simulation. Atomic models are simulated via molecular dynamics annealing using an n-body potential fitted on copper properties including its stacking fault energy. Symmetrical and asymmetrical facets are thus identified. Mainly asymmetrical facets are observed, namely Σ = 9{11, 11, 1}||{1 1 1} and also small parts of incommensurate {1 1 0}||{1 1 1}. The symmetrical facets are described by a quasi-mirror plane atomic structure. A specific GB structural unit is recognized as a Lomer unit. Its GB Burgers vector depends on the GB structure itself. Further analyses of these models and of accommodating dislocations are successfully carried out at the atomic level within the framework of the continuous structural unit approach.  相似文献   

6.
《Acta Materialia》2008,56(7):1417-1426
We have studied the nanoindentation structures achieved at room temperature (RT) on (0 0 1) GaAs with either n or p doping. Elastic–plastic nanoindentations were made over a wide range of loads (between 0.2 and 50 mN) at RT with a Berkovich indenter using two different orientations. Transmission electron microscopy was used to observe systematically the nanoindentation structures (central zone and rosette arms) and to investigate changes in dislocation activity. The mechanical response of both types of samples is relatively similar in terms of hardness, critical shear stress or pop-in load amplitude. In contrast, the indentation rosette structure appears to be sensitive to both doping and indenter orientation. Perfect dislocations show long screw segments only in n-doped specimens, a finding that is attributed to mobility effects. Moreover, p-doped specimens show no partial dislocations while n-doped specimens show partial dislocations in both rosette arms.  相似文献   

7.
J. Narayan 《Acta Materialia》2013,61(8):2703-2724
This paper discusses recent progress in thin film epitaxy across the misfit scale through the paradigm of domain matching epitaxy (DME). This epitaxy across the misfit scale is critical for integrating multifunctionality on a chip and creating smart structures for next-generation solid-state devices. There are three sources of strains that are cumulative at the growth temperature, and the relaxation process starts during the growth process. Upon cooling, unrelaxed lattice, thermal and defect strains give rise to net residual strains. In large misfit (ε ? 10%) systems, where lattice misfit strain is predominant, it can be relaxed completely, and then only thermal and defect strains remain upon cooling. In low misfit systems, all three sources contribute to the residual strain upon cooling, as result of incomplete lattice relaxation. The predominant strain relaxation mechanism in thin films is by nucleation of dislocations at the free surface, as the nucleation energy in the bulk is considerably higher. At the free surface, the activation barrier for dislocation nucleation is considerably lower at the steps. Since the step formation energy is lower under a compressive stress compared with tensile stress, it reduces nucleation energy under compressive stress and lowers the critical thickness compared with tensile stresses in thin films. Once the dislocation nucleates, it propagates or glides to the interface to relieve the strain. However, if lattice frictional stress in the film is high, most dislocations may not reach the interface, depending upon the growth temperature and rate. Thus, these two key steps, dislocation nucleation and propagation, play a critical role in the thin film relaxation process. Once the dislocations reach the interface, the atomic structure of the dislocation at the heterointerfaces determines its electronic properties, specifically trapping and recombination characteristics. It is found that the atomic structure of the dislocation is determined by the interplay between strain and chemical free energies. Thus, the dislocations (representing missing or extra planes) play a critical role in the relaxation of thin film heterostructures. This paper focuses on epitaxy across the misfit scale, based upon matching of integral multiples of lattice planes. If the misfit falls between the integral multiples, it is accommodated by the principle of domain variation, where domains alternate to accommodate the misfit. Details of epitaxy from low misfit (~4%) in Ge/Si) to large misfit (~22%) in TiN/Si are shown. In III-nitride/sapphire and II-oxide/sapphire systems, this paper deals with polar orientations, where misfit is uniform in the basal plane, and non-polar orientations, where misfit varies over an order of magnitude in the film plane. It is shown that the DME paradigm is key to the integration of thin film heterostructures across the misfit scale and other complex systems such as vanadium oxide and PZT systems on Si(1 0 0) substrates for the integration of functionalities on a computer chip. Finally, it is shown that the formation of epitaxial and self-assembled nanodots on Si(1 0 0) provides a critical advance, with tremendous implications for information and data storage and related nanomagnetics applications.  相似文献   

8.
Nd0.45Sr0.55MnO3 is an A-type antiferromagnetic manganite showing obvious angular-dependent magnetoresistance, which can be tuned by misfit strain. The misfit strain relaxation of Nd0.45Sr0.55MnO3 thin films is of both fundamental and technical importance. In this paper, microstructures of epitaxial Nd0.45Sr0.55MnO3 thin films grown on SrTiO3 (1 1 0) substrates by pulsed laser deposition were investigated by means of (scanning) transmission electron microscopy. The Nd0.45Sr0.55MnO3 thin films exhibit a two-layered structure: a continuous perovskite layer epitaxial grown on the substrate followed by epitaxially grown columnar nanostructures. An approximately periodic array of misfit dislocations is found along the interface with line directions of both 〈1 1 1〉 and [0 0 1]. High-resolution (scanning) transmission electron microscopy reveals that all the misfit dislocations possess a〈1 1 0〉-type Burgers vectors. A formation mechanism based on gliding or climbing of the dislocations is proposed to elucidate this novel misfit dislocation configuration. These misfit dislocations have complex effects on the strain relaxation and microstructure of the films, and thus their influence needs further consideration for heteroepitaxial perovskite thin film systems, especially for films grown on substrates with low-symmetry surfaces such as SrTiO3 (1 1 0) and (1 1 1), which are attracting attention for their potentially new functions.  相似文献   

9.
A series of atomic models of the Σ5(2 1 0)/[0 0 1] symmetric tilt grain boundary in yttrium aluminum garnet (YAG) are constructed according to the coincident site lattice theory. Calculations performed using empirical potentials show that the O-termination configurations, namely G(1) and G(2), are the most energetically favorable boundary structures. First-principles density functional theory calculations have been further performed to understand the atomic and electronic structures, effective charge, potential distributions and optical properties of G(1) and G(2) grain boundaries. The simulated high-resolution transmission electron microscopy images of G(1) and G(2) are generally in good agreement with the experimental micrographs of the Σ5(2 1 0)/[0 0 1] grain boundaries. Results show that the effective charges of the atoms in the grain boundary region are related to their coordination numbers and bonding lengths. Moreover, the overall total density of states of G(1) and G(2) has been found to have similar features with the bulk YAG, with the exception of some defect states being introduced at the top of the valence band, resulting in the reduction of the band gap. The calculated optical properties show that the refractive indices of both grain boundary models are slightly larger than those of the bulk YAG. This is in agreement with the experimental observation that the refractive index of the polycrystalline YAG is higher than that of its single crystalline counterpart.  相似文献   

10.
Dislocation segments with Burgers vector b = 〈1 0 0〉 are formed during deformation of body-centred-cubic (bcc) metals by the interaction between dislocations with b = 1/2〈1 1 1〉. Such segments are also created by reactions between dislocations and dislocation loops in irradiated bcc metals. The obstacle resistance produced by these segments on gliding dislocations is controlled by their mobility, which is determined in turn by the atomic structure of their cores. The core structure of a straight 〈1 0 0〉 edge dislocation is investigated here by atomic-scale computer simulation for α-iron using three different interatomic potentials. At low temperature the dislocation has a non-planar core consisting of two 1/2〈1 1 1〉 fractional dislocations with atomic disregistry spread on planes inclined to the main glide plane. Increasing temperature modifies this core structure and so reduces the critical applied shear stress for glide of the 〈1 0 0〉 dislocation. It is concluded that the response of the 〈1 0 0〉 edge dislocation to temperature or applied stress determines specific reaction pathways occurring between a moving dislocation and 1/2〈1 1 1〉 dislocation loops. The implications of this for plastic flow in unirradiated and irradiated ferritic materials are discussed and demonstrated by examples.  相似文献   

11.
The crystal growth shape (CGS) and faceted dendrite growth of silicon near (1 0 0) are observed by in situ observation. The morphological transformations of the facets and curved orientations on the CGSs under different undercoolings (ΔT) are investigated, and the growth mechanism of the faceted dendrite is clarified. (1 1 0) facets with a low growth velocity and (1 0 0) curved interface with a relatively high growth velocity are observed on the crystal during the formation of silicon CGS, which shows a perfect foursquare shape dominated by (1 1 0) facets. At a relatively high ΔT, a faceted dendrite with a flat tip appears at the (1 1 0) facet of CGS. The (1 0 0) curved interface disappears with decreasing curvature. With increasing ΔT, both facet and curved interface growth velocities increase linearly, and the rate of curvature decrease increases. A two-dimensional image is developed to elucidate the growth mechanism of silicon 〈1 1 0〉 faceted dendrites near (1 0 0).  相似文献   

12.
Epitaxial NiSi2 thin films are formed by annealing of Ni on sulfur-implanted silicon (1 0 0). The atomic structure and chemistry of the NiSi2/Si interface are investigated by aberration-corrected transmission electron microscopy. The interface is atomically sharp and runs mainly along the (1 0 0) plane. {1 1 1} segments of interface are also observed as minor facets. The atomic structure of the (1 0 0) and (1 1 1) interface has been determined. Interfacial dislocations with Burgers vectors a/4<1 1 1> and a/2<1 1 0> are observed near {1 1 1} facets. In particular, these dislocations have extra half atomic planes in the Si substrate. This configuration of dislocation does not agree with the sign of the lattice mismatch between bulk NiSi2 and Si. This novel phenomenon is understood by the fact that a high concentration of sulfur in the interface area leads to an expansion of the NiSi2 lattice and thus inverts the sign of the lattice mismatch. It is suggested that the change of the strain status, in addition to the doping effect of S, also plays a role in the tunable Schottky barrier height in this system.  相似文献   

13.
The effect of gaseous hydrogen on cyclic slip behavior around a fatigue crack tip introduced along the {1 1 0} plane in a Fe–3.2 wt.% Si alloy is precisely investigated by cross-sectional transmission electron microscopy and fractography. The results clearly suggest that the fatigue crack growth rate is promoted by hydrogen, whereas the number of dislocations emitted per load cycle is reduced. In addition, dislocation distribution is localized around the crack, causing quasi-brittle crack morphology. A sustained load test confirms that no subcritical crack growth caused by cleavage or micro-void coalescence exists along the {1 1 0} plane, which indicates that the observed increase in the fatigue crack growth rate is correlated solely to the intrinsic effect of hydrogen on the cyclic slip-off process around the crack tip.  相似文献   

14.
《Acta Materialia》2007,55(13):4527-4533
We generalize a previous study of the atomic motions governing grain boundary migration to consider arbitrary misorientations of [0 0 1] tilt boundaries. Our examination of the nature of atomic motions employed three statistical measures of atomic motion: the non-Gaussian parameter, the “dynamic entropy” and the van Hove correlation function. These metrics were previously shown to provide a useful characterization of atomic motions both in glass-forming liquids and strained polycrystalline materials. As before, we find highly cooperative, string-like motion of atoms, but the grain boundary migration itself is a longer timescale process in which atoms move across the grain boundary. These observations are consistent with our previous results for Σ5 [0 0 1] tilt boundaries. It is evident from our work that the grain boundary structure and misorientation have a significant influence on the rate of grain boundary migration.  相似文献   

15.
In situ and post-mortem diffraction contrast transmission electron microscopy (TEM) was used to study the multiplication of dislocations during a thermal martensitic forward and reverse transformation in a NiTi shape memory alloy single crystal. An analysis of the elongated dislocation loops which formed during the transformation was performed. It is proposed that the stress field of an approaching martensite needle activates an in-grown dislocation segment and generates characteristic narrow and elongated dislocation loops which expand on {1 1 0}B2 planes parallel to {0 0 1}B19′ compound twin planes. The findings are compared with TEM results reported in the literature for NiTi and other shape memory alloys. It is suggested that the type of dislocation multiplication mechanism documented in the present study is generic and that it can account for the increase in dislocation densities during thermal and stress-induced martensitic transformations in other shape memory alloys.  相似文献   

16.
《Acta Materialia》2008,56(16):4358-4368
The onset of plasticity in crystalline materials is important to the fundamental understanding of plastic deformation and the development of precision devices. Dislocation nucleation and interactions at the onset of plasticity are investigated here using a multiscale quasi-continuum (QC) method for the nanoindentation of the (0 0 1) surface of a single crystal aluminium (Al) of 200 × 100 nm2 with infinite thickness. Deformation twinning was noted to occur during the nanoindentation of Al. We used unrelaxed and relaxed QC simulations with three embedded atom potentials of Al to evaluate the generalized planar fault (GPF) energies. The energy barrier for initial dislocation nucleation is much higher than that for subsequent nucleation events adjacent to the pre-existing defect. This mechanism promotes deformation twinning when some of the available slip systems are constrained. Dislocation initiation causes a minor load drop in the load–displacement curve, whereas major displacement excursion from experimental observations is the result of collective dislocation activities. (Some figures in this article are in color only in the on-line version.)  相似文献   

17.
《Acta Materialia》2007,55(13):4401-4407
Ultrahigh-vacuum dual-target reactive magnetron sputtering, in a mixed Ar/N2 discharge was used to deposit epitaxial single-crystal MAX phase Ti2AlN(0 0 0 1) thin films, without seed layers, onto Al2O3(0 0 0 1) substrates kept at 1050 °C. By varying the N2 partial pressure a narrow process window was identified for the growth of single-crystal Ti2AlN. The film microstructure was characterized by a combination of X-ray diffraction, spherical aberration (Cs) corrected transmission electron microscopy (TEM), high-resolution image simulation and high-resolution scanning TEM. Nitrogen-depleted deposition conditions resulted in the concurrent formation of N-free Ti–Al intermetallics at the film/substrate interface and a steady-state growth of Ti2AlN together with N-free intermetallic phases. At higher N2 partial pressures the growth assumes a columnar epitaxial nature. 1 Å resolution of the lattice enabling location of all elements in the Ti2AlN unit cell is demonstrated.  相似文献   

18.
《Acta Materialia》2005,53(6):1597-1609
Molecular-dynamics simulations were used to study grain-boundary migration as well as grain-boundary self-diffusion of low-angle and high-angle [0 0 1] planar twist grain boundaries (GBs) in copper. Elastic strain was imposed to drive the planar [0 0 1] twist GBs. The temperature dependence of the GB mobility was determined over a wide misorientation range. Additionally grain-boundary self-diffusion was studied for all investigated [0 0 1] planar twist GBs. A comparison of the activation energies determined shows that grain-boundary migration and self-diffusion are distinctly different processes. The behavior of atoms during grain-boundary migration was analyzed for all studied GBs. The analysis reveals that usually in absolute pure materials high-angle planar [0 0 1] twist GBs move by a collective shuffle mechanism while low-angle GBs move by a dislocation based mechanism. The obtained activation parameters were analyzed with respect to the compensation effect.  相似文献   

19.
《Acta Materialia》2007,55(16):5558-5571
In situ transmission electron microscopy straining experiments were performed on 40, 60, 80 and 160 nm thick single crystalline Au films on polyimide substrates. A transition in deformation mechanisms was observed with decreasing film thickness: the 160 nm thick film deforms predominantly by perfect dislocations while thinner films deform mainly by partial dislocations separated by stacking faults. In contrast to the 160 nm thick film, interfacial dislocation segments are rarely laid down by threading dislocations for the thinner films. At the late stages of deformation in the thicker Au films prior to fracture, dislocations start to glide on the (0 0 1) planes (cube-glide) near the interface with the polymer substrate. The impact of size-dependent dislocation mechanisms on thin film plasticity is addressed.  相似文献   

20.
The kinetic Monte Carlo (KMC) simulations have been carried out to address the temperature dependence of the surface alloying in the Au/Ni (1 1 0) system. It was found that no surface alloying is observed when Au is grown on the Ni (1 1 0) surface at the low temperature (≤240 K). At the moderate temperature (255–300 K), the surface alloying forms with the dominated exchange mechanism of Au ad-dimmers. At the high temperature (350–400 K), the surface alloying with the dominated exchange mechanism of Au monomers is observed. The physical and chemical mechanisms of the unique surface alloying behaviors in the Au/Ni (1 1 0) were proposed on the basis of the atomic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号