首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
以柠檬酸、EDTA为络合剂,CoCl2、SnCl4为主盐的基础电解液,首先在基础电解液中加入硬碳制备Sn-Co-C复合电极材料.SEM观察表明获得的Sn-Co-C复合电极表面为镶嵌C小颗粒的菜花状结构,C物理夹杂在Sn-Co合金中,硬碳的引入使得电极材料的循环性能得到提高,首次充放电比容量分别为563.8和763.2 mA·h/g,而经过50次循环后充放电比容量分别为400.3和416.2 mA·h/g.然后,在基础电解液中加入甲酸,在聚苯乙烯微球(PS)为模板的辅助下制备孔状结构Sn-Co-C复合材料.获得的材料中Sn、Co、C的原子比分别为36.87%,2.82%,20.61%.充放电测试结果表明,孔状结构的Sn-Co-C电极表现出更好的循环性能,首次充放电比容量分别为821.1和946.6 mA·h/g,循环第50次后充放电比容量为401和457.6 mA·h/g,循环第60次后充放电比容量为349.7和401.5 mA·h/g,放电比容量达到400 mA·h/g以上.  相似文献   

2.
采用模板-电沉积法制备锂离子电池Sn-Co-C微孔负极。首先,采用聚合法制备PS球乳液。然后,再以柠檬酸、EDTA为络合剂,CoCl2、SnCl4为主盐,添加甲酸和PS球乳液的电解液中,电沉积制备Sn-Co-C微孔复合电极材料。随后采用EDS、XRD和SEM分析其元素成分、晶体结构和表面形貌。最后采用恒流充放电和交流阻抗测试其电化学性能。结果表明,电极表面的微孔可以缓解锂电池充放电过程中产生的体积变化所导致的活性物质脱落,提高循环性能和寿命。Sn-Co-C负极组成的电池首次充放电比容量分别为705.4和1105 mA.h.g-1,循环126次后充放电比容量分别为393.3和403.2 mA.h.g-1。  相似文献   

3.
以纳米二氧化锡、硝酸钴、脲、葡萄糖和十二烷基硫酸钠为原料,通过水热-碳热还原原位制备锂离子电池Sn-Co-C复合负极材料。通过XRD、SEM、EDS和TEM分析表明,原位生成的Sn-Co合金颗粒分布于纳米或微米尺度的碳球和碳纳米棒内部以及微孔碳基体之中。电化学测试表明,在50 m A·g-1电流密度下,Sn-Co-C复合负极材料首次充放电比容量分别为602.9 m Ah·g-1和867.1 m Ah·g-1,循环100次后其充放电比容量仍分别保持在350.4 m Ah·g-1和356.6 m Ah·g-1,平均每次放电容量衰减率仅为5.1%。优异的电化学性能主要归因于Sn-Co合金颗粒处于纳米或微米尺度的碳球和碳纳米棒内部以及微孔碳基体之中可以改善其导电性,并可以缓解锂电池充放电过程中产生的体积变化所导致的活性物质脱落,提高循环性能和寿命。  相似文献   

4.
采用化学还原法得到纳米级Sn-Co粉末,再经过与硬碳粉混合球磨得到Sn-Co-C复合粉体.能谱测试表明,样品Sn、Co、C原子分数分别为3.89%、1.47%、94.64%.SEM观察显示,50~100 nm锡钴微粒附着在片状的硬碳颗粒上.复合粉体与锂片组成模拟电池,首次放电比容量为558.4 mAh/g,首次充电比容量为338.5 mAh/g.30次循环后,放电比容量保持在348.2 mAh/g,保持率为62.4%;充电比容量保持在335.4 mAh/g,保持率为99.1%.充放电比容量较硬碳提高3倍左右.由分析放电曲线可知,第一次放电后在电极表面形成了固体电解质界面膜(SEI)膜,循环一次后该膜消失.  相似文献   

5.
采用球磨法将Sn-Co合金与石墨复合制备了Sn-Co/石墨复合材料,并对其进行热处理,研究了热处理温度对复合材料结构和电化学性能的影响。结果表明,Sn-Co/石墨复合材料由Co Sn相和石墨组成,Sn-Co合金一部分嵌入石墨颗粒内部,一部分吸附在石墨颗粒表面。电化学测试表明,Sn-Co/石墨复合材料兼具高容量和长循环寿命的优点,首次放电容量和库伦效率分别为349 m A·h/g和81.3%,经过25次循环后的容量保持率为88.3%。热处理导致Sn-Co合金的晶粒长大和Co3Sn2新相的出现,同时降低了复合材料的比表面积。当热处理温度为500℃时,首次放电容量和库伦效率分别为362 m A·h/g和83.6%,经过25次循环后的容量保持率达92.8%,表现出良好的结构稳定性。  相似文献   

6.
在含As3+和Sb3+的盐酸水溶液中通过恒电流沉积制备砷锑合金。利用循环伏安、计时电流暂态技术研究阴极的电结晶过程,结合SEM和EDS观察分析沉积物的表面形貌及成分。结果表明:在该体系中,AsH3气体的析出得到有效抑制;Sb3+的加入有利于合金的电沉积;砷锑在玻碳电极上的电结晶遵循液相传质控制的三维生长机理,随着Sb3+浓度的增大以及柠檬酸络合剂的加入,其形核速率增大,沉积物晶粒细小;增加酸度可进一步细化晶粒,但酸度过高将产生粉末状沉积物。锑离子浓度的增大或柠檬酸络合剂的加入均导致沉积层中砷含量的减少。  相似文献   

7.
采用电沉积法把Sn、Co原子沉积在硬碳颗粒上得到Sn-Co-C复合负极材料,然后球磨。XRD分析表明复合粉体由Sn、Co2C、CoSn2和C组成。电子探针测试表明试样中Sn、Co、C原子分数分别为2.9145%,0.6921%,95.3879%。SEM观察显示,锡钴粒子尺寸为50~100nm,沉积在片状的硬碳颗粒上。试样与锂片组成模拟电池,首次放电比容量为551.5mAh/g,充电比容量为309.4mAh/g。循环50次后放电比容量仍保持在319.6mAh/g,充电比容量保持在281.6mAh/g。交流阻抗测试表明,在第一次放电后形成了固体电解质层膜,但循环一次后消失。  相似文献   

8.
在低共熔溶剂中添加乙二胺四乙酸(EDTA)和氯化铵2种添加剂电沉积制备Zn-Ni合金镀层。研究添加剂对合金电沉积行为、成分、形貌和腐蚀性能的影响。循环伏安测试表明,EDTA的加入可以促进Zn进入Zn-Ni镀层中,而氯化铵起抑制Zn还原的作用。随着EDTA含量的增加,镀层中的Zn含量增加,但镀层的晶粒尺寸和电流效率降低。氯化铵浓度的增大能够有效地降低镀层的晶粒尺寸和Zn的含量,提高阴极电流效率。腐蚀实验表明,从含有氯化铵的镀液中得到的Zn-Ni镀层比从含有EDTA的镀液中得到的镀层具有更高的耐腐蚀性能。此外,添加剂的加入提高了镀层的耐腐蚀性能。  相似文献   

9.
溶胶-凝胶法制备LiFePO_4/C复合材料及其性能   总被引:3,自引:1,他引:2  
为了提高LiFePO4的电化学性能,以柠檬酸为络合剂和碳源,采用溶胶-凝胶法制备LiFePO4/C复合正极材料。采用FTIR和XRD等对前驱体及产物进行表征,并测试样品的电化学性能。结果表明:经700℃烧结10h所得产物具有单一的橄榄石型晶体结构,碳含量为10.81%(质量分数)。样品在0.1C下首次放电比容量为127.1mA·h/g,在0.2C、0.5C、1C下首次放电比容量分别为106.1、83.3、70.6mA·h/g。该样品在0.1C下经过20次循环后,容量还保持为126.3mA·h/g,衰减仅为0.035%。循环伏安和交流阻抗测试表明该材料具有较好的电化学性能。  相似文献   

10.
水溶液中电沉积C0-La薄膜及其性能研究   总被引:1,自引:0,他引:1  
在氨基乙酸为络合剂的水溶液中采用恒电位法沉积出Co-La薄膜,分别研究了pH、沉积电位对镀层结构的影响.结果表明,在镀液pH=4.5时随沉积电位负移,镀层中La含量先增后减;当沉积电位为-1.050 V(vs. SCE),镀液pH值从4.05至4.90变化时,镀层中La含量增大.循环伏安实验证实:Co-La沉积属诱导共沉积.采用XRD研究了镀层的晶化行为,结果表明:镀态镀层含有Co(hcp)相和非晶相,700℃热处理后晶化为Co-La(fcc)固溶体和Co13La合金相.电化学实验表明,Co-La电极比纯Co电极具有更好的析氢电催化活性.Co-La薄膜具有优异的硬磁性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号