首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The primary mullitized andalusite powders were spray-dried and heat-treated to improve sprayable capability. Then, mullite coating was deposited by atmospheric plasma spraying and heat treatment was contributed to recrystallization of the amorphous phase present in the as-sprayed mullite coating. Scanning electron microscopy and x-ray diffraction were used to characterize the microstructure and phase composition of mullite coating. Meanwhile, the phase transition temperature, enthalpy, and specific heat capacity of as-sprayed coatings as well as recrystallized mullite coatings were determined by means of differential scanning calorimetry (DSC). Moreover, tribological properties of as-sprayed coating were investigated by SRV-IV friction and wear tester from 200 to 800 °C. It has been found that the as-sprayed coating possesses good thermal stability. DSC analysis reveals that recrystallization of the glassy phase present in the mullite coating occurs at about 980 °C. The friction coefficient of mullite coating was gradually increased from 0.82 at 200 °C to the highest value of 1.12 at 800 °C, while wear rates of the coating were at the order of 10?5 mm3/Nm. The as-sprayed coating suffered the most severe wear at 800 °C. The observed wear mechanisms were mainly abrasive wear, brittle fracture, and pulling-out of splats.  相似文献   

2.
Thermal spray processes are widely used to protect materials and components against wear, corrosion and oxidation. Despite the use of the latest developments of thermal spraying, such as high-velocity oxy-fuel (HVOF) and plasma spraying, these coatings may in certain service conditions show inadequate performance,e.g., due to insufficient bond strength and/or mechanical properties and corrosion resistance inferior to those of corresponding bulk materials. The main cause for a low bond strength in thermalsprayed coatings is the low process temperature, which results only in mechanical bonding. Mechanical and corrosion properties typically inferior to wrought materials are caused by the chemical and structural inhomogeneity of the thermal-sprayed coating material. To overcome the drawbacks of sprayed structures and to markedly improve the coating properties, laser remelting of sprayed coatings was studied in the present work. The coating material was nickel-based superalloy Inconel 625, which contains chromium and molybdenum as the main alloying agents. The coating was prepared by HVOF spraying onto mild steel substrates. High-power continuous wave Nd:YAG laser equipped with large beam optics was used to remelt the HVOF sprayed coating using different levels of power and scanning speed. The coatings as-sprayed and after laser remelting were characterized by optical microscopy and scanning electron microscopy (SEM). Laser remelting resulted in homogenization of the sprayed structure. This strongly improved the performance of the laser-remelted coatings in adhesion, wet corrosion, and high-temperature oxidation testing. The properties of the laser-remelted coatings were compared directly with the properties of as-sprayed HVOF coatings and with plasma-transferred arc (PTA) overlay coatings and wrought Inconel 625 alloy.  相似文献   

3.
分别采用高能球磨制备了TiB2含量(质量分数)为10%的316L不锈钢基复合粉,高能球磨与喷雾干燥造粒工艺制备了TiB2含量(质量分数)为40%的316L不锈钢基复合粉,大气等离子喷涂制备相应的TiB2-316L不锈钢基金属陶瓷涂层与316L不锈钢涂层.室温下采用高速环块磨损试验研究TiB2-316L不锈钢基金属陶瓷涂层的磨损特性.采用X射线衍射分析涂层物相,扫描电镜分析喷涂粉末、涂层结构和摩擦副磨损表面形貌.结果表明,大气等离子喷涂两种制粉工艺获得的316L不锈钢基TiB2复合粉能获得较耐磨的316L不锈钢基TiB2复合涂层,耐磨性高于316L不锈钢涂层,且TiB2在复合涂层中增强涂层耐磨性的原因是TiB2颗粒在涂层316L韧性基体中充当强化相,且TiB2在摩擦接触处摩擦氧化形成的氧化产物具有自润滑特性,能减少涂层的磨损量.  相似文献   

4.
In this study, nanostructured ZrO2-3 mol% Y2O3 coatings were deposited by air plasma spray using reconstituted feedstock. The coating structures were characterized by x-ray diffractometer, micro-Raman spectrometer, field emission scanning electron microscope, and transmission electron microscope. It is revealed that the as-sprayed coating is mainly composed of columnar grains with diameters <100 nm and demonstrates the better toughness, higher microhardness, and lower porosity. It consists only of nontransformable tetragonal ZrO2 phase. The tribological performance of the coating was examined with a ball-on-disk apparatus under dry sliding conditions. The results show that the friction coefficient of as-sprayed coating was approximately one-fifth of the conventional zirconia coating and wear rate was lower one order of magnitude than the conventional zirconia coating. The dominant wear mechanism is abrasive wear. The improved wear resistance can be attributed to the increased mechanical properties of as-sprayed coating.  相似文献   

5.
Summary

It has been recently reported that porous Ti-N sprayed coatings can be made fine-structured by laser irradiation. This paper describes an investigation of the effects of infiltrated metal species on the wear resistance of Ti-N remelted layers.

Non-ferrous metal powders were sprayed on SS400 steel plate substrates in an argon atmosphere. The coating thickness was around 200 μm. Pure titanium was also sprayed on the non-ferrous sprayed coatings in a nitrogen atmosphere. The coating thickness was around 400 μm. Coating specimens consisting of non-ferrous and Ti-N layers were remelted by laser in a nitrogen atmosphere. The remelted layers of the coatings had a fine microstructure with a hardness value above HV1000. The wear resistance of the Ti-N coatings was appreciably improved by remelting.  相似文献   

6.
The corrosion and wear behaviour of HVOF (high velocity oxygen fuel) sprayed WC-CoCr (cermet) coatings were investigated before and after electron beam (EB) remelting. In this regard, the coatings were deposited on INCONEL 617 substrate. The mentioned Ni-based alloy is well known for its good corrosion behaviour in chloride containing media but exhibits not enough good wear properties.The paper investigates the influence of EB-remelting process on sliding wear respectively on corrosion resistance in 1 M NaCl solution of the alloyed surface. Scanning electron microscopy (SEM) and X-Ray Diffraction (XRD) were performed before respectively after the EB-treatment in order to investigate the coating morphology as well as the phase modification achieved through the alloying process. Tribological tests concerning the sliding wear behaviour of the tested materials revealed a significant decrease of the wear rate for both the as-sprayed coating respectively the alloyed surface in comparison with the base material. However, the as-sprayed cermet coating exhibits the lowest wear rate among the investigated samples.The microhardness of the alloyed surface was higher (1100 HV03) in comparison with that of the as-sprayed cermet coating (905 HV03) as a result of new phase formation (especially the η-Co4W2C). The corrosion behaviour in salt water of the EB remelted surface was also considerably improved in contrast to the as-sprayed cermet coating.  相似文献   

7.
目的提高电弧喷涂含非晶相Fe基涂层的抗冲蚀及耐腐蚀性能。方法采用YAG脉冲激光器对电弧喷涂含非晶相Fe基涂层进行激光重熔处理。通过X-ray、SEM、冲蚀磨损和电化学等检测手段,研究该涂层重熔后的组织结构、冲蚀磨损性能和耐腐蚀性能。结果电弧喷涂含非晶相Fe基涂层经激光重熔后发生了晶化,并随着功率的增加,非晶含量降低,硬度也降低。重熔后,涂层与基体的结合方式由之前的机械咬合转变为冶金结合,涂层的致密度明显提高,组织缺陷减少。与喷涂层相比,0.3k W激光重熔涂层的抗冲蚀性能在30°攻角下可提高3倍,在90°攻角下可提高将近6倍。重熔层的冲蚀磨损机制在低冲角时以显微切削为主,高冲角时则以挤压破碎为主。随着激光功率的增加,重熔涂层的抗冲蚀性能降低。同时,在3.5%NaCl溶液中,重熔层的耐蚀性能随重熔激光功率的提高而提高,并且重熔层的腐蚀电流密度比喷涂层明显降低。结论激光重熔不但改善了电弧喷涂含非晶相Fe基涂层与基体间的结合状态,同时也增强了涂层的耐蚀和耐磨性能,是一种有效提升涂层性能的后处理工艺。  相似文献   

8.
Plasma sprayed ceramic coatings are widely used for thermal barrier coating applications. Commercially available mullite powder particles and a mixture of mechanically alloyed alumina and silica powder particles were used to deposit mullite ceramic coatings by plasma spraying. The coatings were deposited at three different substrate temperatures (room temperature, 300?°C, and 600?°C) on stainless steel substrates. Microstructure and morphology of both powder particles as well as coatings were investigated by using scanning electron microscopy. Phase formation and degree of crystallization of coatings were analyzed by x-ray diffraction. Differential thermal analysis (DTA) was used to study phase transformations in the coatings. Results indicated that the porosity level in the coatings deposited using mullite initial powder particles were lower than those deposited using the mixed initial powder particles. The degree of crystallization of the coatings deposited using the mixed powder particles was higher than that deposited using mullite powder particles at substrate temperatures of 25 and 300?°C. DTA curves of the coatings deposited using the mixed powders showed some transformation of the retained amorphous phase into mullite and alumina. The degree of crystallization of the as sprayed coatings using the mixed powder particles was significantly increased after post deposition heat treatments. The results indicated that the mechanically alloyed mixed powder can be used as initial powder particles for deposition of mullite coatings instead of using mullite powders.  相似文献   

9.
为了提高等离子喷涂WC颗粒增强镍基涂层的性能,采用激光重熔工艺对涂层进行处理,研究了激光重熔对涂层微观组织和性能的影响.用扫描电镜(SEM)、X射线衍射仪(XRD)和显微硬度计分析了涂层表面形貌、微观结构、相组成和显微硬度,同时对涂层的高温摩擦磨损特性进行了考察.结果表明,激光重熔消除了等离子喷涂层的层片状结构、孔隙等缺陷,涂层致密度提高;另外在激光高能量密度作用下,WC颗粒部分熔化,并在周围析出枝晶结构.激光重熔处理后涂层的显微硬度明显提高,其磨损性能也显著高于原等离子喷涂层.  相似文献   

10.
In recent years, thermal sprayed protective coatings have gained widespread acceptance for a variety of industrial applications. A vast majority of these applications involve the use of thermal sprayed coatings to combat wear. While plasma spraying is the most versatile variant of all the thermal spray processes, the detonation gun (D-gun) coatings have been a novelty until recently because of their proprietary nature. The present study is aimed at comparing the tribological behavior of coatings deposited using the two above techniques by focusing on some popular coating materials that are widely adopted for wear resistant applications, namely, WC-12% Co, A12O3, and Cr3C2-MCr. To enable a comprehensive comparison of the above indicated thermal spray techniques as well as coating materials, the deposited coatings were extensively characterized employing microstructural evaluation, microhardness measurements, and XRD analysis for phase constitution. The behavior of these coatings under different wear modes was also evaluated by determining their tribological performance when subjected to solid particle erosion tests, rubber wheel sand abrasion tests, and pin-on-disk sliding wear tests. The results from the above tests are discussed here. It is evident that the D-gun sprayed coatings consistently exhibit denser microstructures and higher hardness values than their plasma sprayed counterparts. The D-gun coatings are also found to unfailingly exhibit superior tribological performance superior to the corresponding plasma sprayed coatings in all wear tests. Among all the coating materials studied, D-gun sprayed WC-12%Co, in general, yields the best performance under different modes of wear, whereas plasma sprayed Al2O3 shows least wear resistance to every wear mode.  相似文献   

11.
The microstructure and wear performance of M203-13% TiO2 coatings prepared by plasma spraying of agglom- erated nanoparticle powders were investigated. SEM analysis showed that the as-sprayed Al2O3-TiO2 coatings comprise of two kinds of typical region: fully melted region and unmelted/partially melted nanostructured region, which is different than the conventional coating with lamellar structure. It is shown that the microhardness of the nanostructured coatings was about 15%-30% higher than that of the conventional coating and the wear resistance is significantly improved, especially under a high wear load. The nanostructured coating sprayed at a lower power shows a lower wear resistance than the coatings produced at a higher power, because of the presence of pores and microstructural defects which are detrimental to the fracture toughness of the coatings.  相似文献   

12.
《金属精饰学会汇刊》2012,90(6):298-304
ABSTRACT

AISI 8620 steel substrates were coated with WC–Co and Cr3C2–NiCr by using the atmospheric plasma spraying (APS) method. Subsequently, surface melting of samples coated with APS was performed at different current values using the plasma transfer arc (PTA) method. Microstructure, microhardness, and wear properties of as-sprayed and surface-modified coatings were investigated. The microstructure of the APS-coated surface had some voids, cracks and nonhomogeneous areas. These defects were eliminated with the PTA surface modification process and microstructural properties of coatings were improved. The wear resistance of PTA modified coatings was also increased. The highest wear resistance and microhardness were obtained in WC–Co coating modified by PTA at a current of 80?A. The wear resistance of this coating was 8.5 times higher than that of the substrate. The coating hardness reached values as high as 980?HV0,1 in this coating.  相似文献   

13.
Natural andalusite powder was calcinated at a high temperature in air to realize secondary mullitization. The resultant secondary mullitized powder was spray-dried and heat-treated to improve sprayable capability. The heat-treated spherical powder was then plasma sprayed onto Ni-based high-temperature alloy (Hastelloy C-276) to form mullite coatings. The chemical composition and phase structure of the as-sprayed and thermally cycled mullite coatings were determined by means of energy dispersive X-ray fluorescence (ED-XRF) and X-ray diffraction. The microstructure of the as-sprayed coatings was analyzed by using a scanning electron microscope; and their porosity, microhardness and bonding strength were measured. Moreover, the phase transition temperature and enthalpy of the coatings were determined by means of differential scanning calorimetry; and their thermal shock resistance was evaluated as well. Results show that the spray-dried and heat-treated powder consists of mullite and a small amount of Al2O3; while the as-sprayed mullite coatings are composed of crystalline mullite as the major phase and a small amount of amorphous glass phase. During thermal cycle test, the amorphous glass phase is partially transformed to crystalline mullite, finally leading to failure of the coatings. Whether before or after thermal cycle, the mullite coatings experience phase transition around 980 °C, and the enthalpy of crystallization is determined to be − 141.9 × 10− 3 J/kg and − 95.48 × 10− 3 J/kg, respectively. The as-sprayed mullite coatings have a porosity of about 6.0 ± 0.2% and possess good thermal cycle resistance, showing promising prospect in a high-temperature application.  相似文献   

14.
The structure of low-pressure plasma sprayed ceramic coatings on a molybdenum substrate depends on the spray parameters. Porosity decreases with decreasing chamber pressure for all mullite and alumina coatings investigated, whereas the number of cracks decreases for the mullite-type coatings and increases for the alumina-type coatings. The structure of the coatings was analyzed by X-ray diffraction and revealed that the phase content was independent of the chamber pressure. The results indicate that the lowest thermal mismatch exists between the mullite/glass coating and the molybdenum substrate.  相似文献   

15.
Improvement of wear resistance of plasma-sprayed molybdenum blend coatings   总被引:3,自引:0,他引:3  
The wear resistance of plasma sprayed molybdenum blend coatings applicable to synchronizer rings or piston rings was investigated in this study. Four spray powders, one of which was pure molybdenum and the others blended powders of bronze and aluminum-silicon alloy powders mixed with molybdenum powders, were sprayed on a low-carbon steel substrate by atmospheric plasma spraying. Microstructural analysis of the coatings showed that the phases formed during spraying were relatively homogeneously distributed in the molybdenum matrix. The wear test results revealed that the wear rate of all the coatings increased with increasing wear load and that the blended coatings exhibited better wear resistance than the pure molybdenum coating, although the hardness was lower. In the pure molybdenum coatings, splats were readily fractured, or cracks were initiated between splats under high wear loads, thereby leading to the decrease in wear resistance. On the other hand, the molybdenum coating blended with bronze and aluminum-silicon alloy powders exhibited excellent wear resistance because hard phases such as CuAl2 and Cu9Al4 formed inside the coating.  相似文献   

16.
Nickel and chromium coatings were produced on the copper sheet using plasma spraying and laser remelting. The sliding wear test was achieved on a block-on-ring tester and the corrosion test was carried out in an acidic atmosphere. The corrosive behaviors of both coatings and original copper samples were investigated by using an impedance comparison method. The experimental results show that the nickel and chromium coatings display better wear resistance and corrosion resistance relative to the original pure copper sample. The wear resistance of the coatings is 8 - 12 times as large as original samples, and the wear resistance of laser remelted samples is better than that of plasma sprayed ones. The corrosion resistance of laser remelted nickel and chromium samples is better than that of plasma sprayed samples respectively. The corrosion rate of chromium coatings is less than that of nickel coatings, and the laser remelted Cr coating exhibits the least corrosion rate.  相似文献   

17.
Chromium carbide-based thermally sprayed coatings are widely used for high temperature wear applications (typical temperature range from 540 to 900 °C). In these extreme environments at those temperatures, several phenomena will degrade, oxidize, and change the microstructure of the coatings, thereby affecting their wear behavior. Although it can be easily conceived that the Cr3C2-NiCr coating microstructure evolution after high temperature exposure will depend on the as-sprayed microstructure and spraying parameters, very little has been done in this regard. This study intends to develop a better understanding of the effect of spraying parameters on the resulting chromium carbide coating microstructure after high temperature operation and high temperature sliding wear properties. The microstructures of different coatings produced from two morphologies of Cr3C2-NiCr powders and under a window of in-flight particle temperature and velocity values were characterized through x-ray diffraction and scanning electron microscopy. Sliding wear at 800 °C was performed and the wear behavior correlated with the spraying parameters and coating microstructure. Vickers microhardness (300 gf) of the coatings before and after sliding wear was also measured.  相似文献   

18.
Four types of NiCr-Cr2O3 composite coatings doped with different mass fraction of Nd2O3 were deposited by atmospheric plasma spraying. The microstructure and phase composition of as-sprayed coatings were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD). Furthermore, their friction and wear behaviors at 20 and 600 °C under unlubricated condition were evaluated using CSM high temperature tribometer. The results showed that Nd2O3 could refine microstructure of NiCr-Cr2O3 composite coating and make Cr2O3 distribution more uniform in the coating, which leads to the increase of average microhardness. In addition, NiCr-Cr2O3 composite coatings doped with Nd2O3 had better wear resistance than that without Nd2O3 at experimental temperatures. Especially, the coating containing 8 wt.% Nd2O3 showed the best wear resistance at 20 and 600 °C, which was attributed to the refined microstructure and improved microhardness. At 20 °C, the wear mechanism of the coating was abrasive wear, brittle fracture and splat detachment. At 600 °C, the wear mechanism was adhesion wear and plastic deformation.  相似文献   

19.
The tribological behavior of high-velocity oxyfuel sprayed Co-28%Mo-17%Cr-3%Si coatings, both assprayed and after heat treatments at 200, 400, and 600 °C for 1 h, has been studied. The as-sprayed coating contains oxide stringers and is mostly amorphous. It has low hardness (∼6.7 GPa) and toughness and undergoes adhesive wear against 100Cr6 steel. The friction coefficient increases up to ∼0.9, so the flash temperature reaches a critical oxidation value; then, friction decreases and increases again. This phenomenon occurs periodically. Much adhesive wear occurs in the first stage. Abrasive wear prevails against alumina pin: the coating wear rate is lower because it possesses good plasticity. Thermal effects still occur. The 600 °C treatment causes formation of submicrometric crystals. Hardness increases (∼8.8 GPa), adhesive wear is prevented, the friction coefficient has no peaks. Against the alumina pin, wear rates remain similar to the as-sprayed case. Nevertheless, the friction coefficient has no peaks and its final value is lowered (from 0.84 to 0.75). This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

20.
To improve the wear resistance of the cylinder liner of the engines operating in desert area, the tungsten carbide-based cermet coating (WC-12wt.%Co) was produced using the supersonic plasma spraying technique. The microstructure and phase composition of the as-sprayed coating were evaluated. The effect of sand size in lubricant on the friction and wear behavior of the coating under the lubrication of oil containing sand was investigated on a ball-on-disk tribometer. Characterization of the coating shows that the coating possesses dense microstructure with low level of porosity. The decarburization of WC is limited for the high particle velocity of the supersonic plasma spraying and only a few of W2C phases are observed in the coating. With the higher hardness and the good adhesion with the substrate the sprayed coating exhibits a better wear resistance compared with the gray casting iron used in the current cylinder liner. Micro-structural examination shows that the wear of coating is dominated by micro-cutting, WC particles pull-out and sub-surface indentation-induced sub-surface cracking, while the main wear mechanism of the gray casting iron is micro-cutting and plastic deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号