首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 722 毫秒

1.  Cr含量对WC-Co硬质合金显微组织和力学性能的影响  
   朱军  刘颖  叶金文  杨嘉  廖立《功能材料》,2012年第43卷第23期
   采用低压烧结技术制备了不同Cr含量的WC-8Co硬质合金,通过XRD、SEM和力学性能测试等手段分析了Cr含量对硬质合金物相、显微结构和合金的力学性能的影响。结果表明,当Cr含量<0.9%时,合金由WC+γ-(WC)相组成,添加量增至0.9%及以上时,组织中出现缺碳相Co3W3C;随着Cr含量的增加,WC晶粒不断细化,当添加量为0.6%时,合金的综合力学性能最佳,其抗弯强度、维氏硬度及断裂韧性分别为3885MPa、1632.4HV30、9.82MPa.m1/2。    

2.  WC_xTaC-Co硬质合金的结构性能及高温硬度的演变  
   林亮亮《金刚石与磨料磨具工程》,2018年第4期
   通过扫描电镜(SEM)、X射线衍射(XRD)、电子探针微区分析(EPMA)、常规物理力学性能检测以及高温硬度测试方法,研究WC-Co硬质合金中添加质量分数为0.00%~3.00%的TaC对其组织结构、力学性能以及高温硬度的影响。研究结果表明:当TaC质量分数低于0.50%时,TaC主要溶解于硬质合金黏结相中,起固溶强化和抑制晶粒长大的作用,合金的室温维氏硬度和抗弯强度明显提升;当TaC质量分数由0.50%增加至3.00%时,合金结构中开始出现不均匀分布的(Ta,W)C析出相,合金的室温维氏硬度缓慢增加,抗弯强度先缓慢增加而后下降。添加TaC有助于提升硬质合金的高温硬度,提升效果与TaC添加量存在一定的正相关关系。在1000℃高温下,未添加TaC的合金高温维氏硬度为802MPa,而添加质量分数1.50%的TaC的合金高温维氏硬度明显改善,其高温硬度值可达1 025MPa。    

3.  稀土Y_2O_3对WC-6%Co超细硬质合金组织及性能的影响  
   秦琴《硬质合金》,2013年第1期
   本文研究了在复合抑制剂(Cr3C2/VC/TaC)组成及含量不变的基础上,添加不同量Y2O3对WC-6%Co超细硬质合金的组织结构、磁性能及力学性能的影响。通过XRD以及性能测试,研究发现:在WC-6%Co超细硬质合金中添加Y2O3,能起到细化晶粒的效果,当添加0.2%Y2O3时,合金的晶粒最细,致密度最好,WC晶粒分布均匀;Y2O3会影响WC-6%Co超细硬质合金的磁性能,随着Y2O3含量的增加,合金的矫顽磁力增加,磁饱和强度略有降低,Y2O3能有效的改善合金的机械性能,特别是其抗弯强度。结果表明,当抑制剂配方为0.8%(Cr3C2/VC/TaC)+0.2%Y2O3时,制备的WC-6%Co超细硬质合金的机械性能具有最佳值,硬度达到94.1 HRA,抗弯强度1 770 MPa。    

4.  TaC含量对TiCN基金属陶瓷组织与性能的影响  
   陈敏  肖玄  张雪峰《粉末冶金材料科学与工程》,2016年第2期
   以TiC,TiN,WC,Mo,Co,Ni和TaC为原料制备TiCN基金属陶瓷,结合XRD,SEM&EDS和力学性能测试,研究TaC含量对TiCN基金属陶瓷物相组成、显微组织与力学性能的影响.结果表明:TiCN基金属陶瓷的硬质相为TiC0.7N0.3,MoC,TiWC2和TiTaCN.粘结相Co,Ni固溶Ti,W,Mo,Ta元素形成Ti0.08Ni0.92,TiCo3,W0.15Ni0.85,Co0.9W0.1,Ta0.08Ni0.92和Mo0.09Ni0.91等.TiCN基金属陶瓷的显微组织由黑色相Ti(C,N)、灰色相(Ti,Mo,Ta,W)(C,N)和白色相(Ti,Mo,Ta,W)C-Co-Ni组成,形成黑芯-灰环及黑芯-白环-灰环包覆结构.随TaC含量增加,固溶相(Ti,Ta,W,Mo)(C,N)的含量与黑芯-白环-灰环包覆结构相增加,TiCN基金属陶瓷的抗弯强度提高,硬度略有下降.适宜的TaC添加量为9%,所得金属陶瓷的抗弯强度和硬度HV分别为1299 MPa和1252 MPa.    

5.  用喷雾转化法制备的纳米晶粉末烧结的WC—10Co硬质合金的力学性能  
   SeungI.Cha 陈莹《国外难熔金属与硬质材料》,2002年第18卷第2期
   研究了纳米晶WC-10Co硬质合金的力学性能和显著结构。这种纳米晶WC-10Co硬质合金粉末是将含有偏钨酸铵(AMT)和硝酸钴的溶液喷雾干燥制得的纳米晶前驱体粉末再经过还原和碳化制备的。直径约100nm的WC粉末与Co炽结相混合均匀,并在1毫乇压力和1375℃下进行烧结。为了与纳米晶料WC-10Co的显微结构和力学性能相比较,将直径范围为0.57-4μm的工业用WC粉末与Co粉混合,并在与纳米晶粉末相同的条件下进行烧结,在纳米晶WC-10Co硬质合金中加入不同量的TaC、Cr3C2和VC作为晶粒长大抑制剂。为研究WC-10Co硬质合金中Co粘结相的显微结构,以WC-10Co硬质合金烧结温度下制备了Co-W-C合金。WC-10Co硬质合金随着WC粒度的减小而增加的硬度因而符合霍尔-佩奇型关系式。WC-10Co硬质合金的断裂韧性随着Co粘结相的HCP(密排六方相)/FCC(面心六方相)比的增大(由于HCP/FCC相引起的)而提高。    

6.  WC—Co硬质合金中TaC,Cr3C2添加剂的作用机理  被引次数:7
   刘寿荣《稀有金属材料与工程》,1997年第26卷第6期
   研究了添加剂TaC、Cr3C2对WC-10Co合金组合结构和性能的影响及相关机理。结果表明,添加少量TaC(w=2%)、Cr3C2(w=0.44%)可导致WC-10Co合金的WC晶粒明显细化、WC邻接度下降、γ相平均自由程减小,但强韧性有所下降;Cr3C2助长WC-10Co合金WC晶粒断续长大;TaC-WC固溶体耐碱蚀性差;合金断口中沿WC-WC晶界脆断比例增加,TaC-WC固溶体晶粒倾向于穿晶劈    

7.  TaC,Cr3C2对WC—Co硬质合金组织和性能的影响  被引次数:6
   刘寿荣 周金亭《硬质合金》,1997年第14卷第1期
   研究了添加:TaC、Cr3C2对WC-10Co合金组织结构和性能影响,讨论了相关机理。结果表明,少量添加TaC(2-m%)、Cr3C2(0.44m%)可导致WC-10Co合金的WC晶粒明显细化’WC邻接度下降,γ相平均自由程减小,但强韧性有所下降;Cr3C2助长WC-10Co合金WC晶粒断续长大;TaC-WC固溶体耐碱蚀性差;合金断口中沿WC—WC品界脆断比例增加,TaC-WC固溶体晶粒倾向于穿晶劈裂。工艺中控制TaC、Cr3C2添加量、确保WC~Cr3C2粉碳化完善以及同时添加TaC、Cr3C2对确保合金材质至关重要。    

8.  VC/Cr3C2添加剂与烧结温度对超细WC-12Co硬质合金的影响  
   雷贻文  吴恩熙《材料科学与工艺》,2010年第18卷第3期
   为了有效控制烧结过程中WC晶粒的长大,获得高强度高硬度的超细硬质合金,采用扫描电镜、拉伸机和洛氏硬度仪研究了不同质量分数及配比的VC/Cr3C2晶粒长大抑制剂和烧结温度对超细WC-12Co硬质合金的显微组织及力学性能的影响,并结合试验结果分析了超细硬质合金中VC/Cr3C2晶粒长大抑制剂的作用机理.结果表明,添加适量VC/Cr3C2晶粒长大抑制剂的超细硬质合金中WC晶粒尺寸分布集中,不存在明显的组织缺陷,合金具有细而均匀的微观组织及优异的力学性能.当晶粒长大抑制剂(质量分数)为0.2%VC/0.5%Cr3C2,1450℃烧结制备WC-12Co超细硬质合金的抗弯强度为3710MPa,硬度(HRA)为91.5.VC/Cr3C2晶粒长大抑制剂的作用机理为:VC主要与WC反应生成(W,V)C固溶体聚集在WC/Co界面,降低WC/Co界面能,Cr3C2主要固溶在粘结相中,导致WC在粘结相中的溶解度降低,二者的综合作用减缓了粘结相中WC溶解-析出过程,从而抑制烧结过程中WC晶粒的长大.    

9.  晶粒长大抑制剂对超细WC-9%Co硬质合金性能的影响  被引次数:2
   李亚军  栾道成  王正云  左洪松  秦琴《硬质合金》,2011年第28卷第5期
   在复合抑制剂(VC/Cr3C2)的基础上,添加了不同配比的TaC,研究了TaC对超细WC-9%Co硬质合金组织结构和力学性能的影响。结果表明:添加不同配比的TaC制备的WC-9%Co硬质合金的硬度随着TaC质量分数的增加先增大后减小;TaC的加入降低了W在Co相中的固溶度,从而抑制了晶粒长大。在本实验范围内,在复合抑制剂(VC/Cr3C2)质量分数为0.6%的基础上添加质量分数0.3%的TaC,经1 390℃真空烧结后,制备的超细WC-9%Co硬质合金硬度为93.5 HRA,TRS为2 370 MPa,致密度为99.5%,磁饱和强度为13.29 G.cm3/g,矫顽磁力为31.86 kA/m,此时具有较佳的综合力学性能。    

10.  Cu部分代Co超细硬质合金研究  被引次数:2
   吝楠  吴冲浒  张端锋  江垚  贺跃辉《材料研究学报》,2011年第6期
   基于Cu与Co相同的晶型结构和相似的原子结构,采用共沉淀方法,制备Cu部分代Co的WC-10Co硬质合金,研究Cu对材料的组织和力学性能的影响.实验结果表明,通过Cu-Co共沉淀方式将Cu加入粘接相中,形成Co(Cu)固溶体,在液相烧结过程中Cu均匀地分布在Co中,可以降低WC在粘接相中的溶解度,有效阻碍WC颗粒的溶解再析出,抑制WC晶粒的长大,提高硬质合金的硬度。Cu的添加还可以使粘结相产生固溶强化,提高硬质合金的抗弯强度。当Cu的质量添加量为1.5%时,硬质合金综合力学性能得到提高,合金硬度由无Cu时的HRA92.6提高至HRA93.2,抗弯强度由2150 MPa提高至2490 MPa.    

11.  超细晶硬质合金显微组织参数与力学性能定量关系的研究  被引次数:1
   赵世贤  宋晓艳  刘雪梅  魏崇斌  王海滨  高杨《金属学报》,2011年第9期
   对超细晶WC-Co硬质合金的复相显微组织进行了系统的定量化表征和分析,获得了WC晶粒尺寸d_(WC),Co相平均自由程L_(Co)和WC晶粒邻接度C_(WC-WC)等显微组织参数与力学性能的定量关系,模型预测结果与实验测定结果符合很好.结果表明,当C_(WC-WC)基本相同时,超细晶硬质合金的硬度分别与d_(WC)~(-1/2)和L_(Co)~(-1/2)成线性正比关系,断裂韧性K_(IC)分别与d_(WC)~(-1/2)和L_(Co)~(-1/2)成确定性函数关系.在Co含量一定、WC平均晶粒尺寸基本相同的情况下,随着C_(WC-WC)的增大,超细晶硬质合金的横向断裂强度降低,且当C_(WC-WC)>0.5时,硬质合金的强度随C_(WC-WC)增加显著下降.    

12.  钴基合金Co-Al-W-Ta-Nb的显微组织与高低温力学性能  
   王少飞  李树索  沙江波《稀有金属材料与工程》,2013年第42卷第5期
   以新型Co基合金Co-9Al-9W-2Ta为基础,分别用4at%、6at%和9at%的Nb元素替代等量的W(分别称4Nb、6Nb、9Nb合金,无Nb添加的称为0Nb合金),研究Nb含量对合金显微组织和高低温力学性能的影响。结果表明:铸态组织由Co基固溶体γ相和γ+Co3Nb共晶组成(Nb可部分被W和/或Ta取代),随Nb含量提高,共晶组织体积分数增大。1200℃/8h固溶+800℃/100h时效处理后,γ中析出尺寸为数百纳米并与之共格的γ’-Co3(Al,W)相或Co3Nb相,显微组织由γ/γ’组织(0Nb)逐步向γ/γ’/Co3Nb组织(4Nb和6Nb合金)和γ/Co3Nb组织转变(9Nb合金)。合金在600℃开始出现反常屈服,反常屈服强度峰值对应温度大约在700℃。    

13.  含(W,Ti,Ta)C的超细硬质合金的性能及组织研究  被引次数:1
   赵太源  栾道成  王正云  熊万全《硬质合金》,2012年第5期
   本文在WC-8%Co(文中含量均为质量分数)、复合抑制剂(VC/Cr3C2)的基础上,添加不同配比的Cr3C2及(W,Ti,Ta)C,制备超细硬质合金。采用横向断裂强度检测、洛式硬度检测、SEM分析、TEM检测等方法,研究了Cr3C2和(W,Ti,Ta)C对超细硬质合金力学性能和组织结构的影响。结果表明:随着Cr3C2、(W,Ti,Ta)C的增加,晶粒大小没有显著变化,硬质合金的横向断裂强度减低,硬度提高。通过透射电镜观察,在WC-8%Co-4%(W,Ti,Ta)C-0.5%(VC/Cr3C2)硬质合金中发现了类似于孪晶的结构,并通过能谱证实了Cr3C2和(W,Ti,Ta)C的存在。WC-8%Co-4%(W,Ti,Ta)C硬质合金经1 390℃压力烧结后,硬度为93.8 HRA,抗弯强度为2 250 MPa,相对密度为99.7%。    

14.  Cr3C2对WC-6.5%Co硬质合金组织和性能的影响  
   李海艳  刘宁  王丽利《热处理》,2010年第25卷第2期
   通过向WC-6.5%Co硬质合金中添加0%~2.0%的晶粒长大抑制剂Cr3C2,研究了其对硬质合金组织和力学性能的影响。研究结果表明,Cr3C2的添加细化了WC晶粒,但不能完全抑制WC晶粒的异常长大。Cr3C2使合金的硬度提高,但是却降低了合金的致密度和抗弯强度。Cr3C2添加量为0.5%时,合金的综合性能最好。    

15.  粗WC颗粒对低钴硬质合金组织与性能的影响  
   闫明远  张伟彬  谭澄宇  龙坚战  杜勇《粉末冶金材料科学与工程》,2017年第22卷第1期
   以粒度为5μm的粗WC颗粒和粒度为1μm的细WC颗粒为原料,采用6种不同的粗/细颗粒质量配比,通过低压烧结制备Co含量(质量分数,下同)为7%的低钴WC–Co硬质合金,测试材料的抗弯强度、断裂韧性和硬度,并采用扫描电镜(SEM)观察材料的微观组织、弯曲断口形貌及裂纹扩展情况,研究粗颗粒WC含量对低钴硬质合金组织与性能的影响.结果表明,随粗颗粒WC含量增加,WC晶粒度的分布表现为明显的双峰结构特征,从合金的弯曲断口观察到裂纹偏转以及穿晶断裂数量显著增加,以此阻碍裂纹扩展,从而提高合金的韧性.合金硬度随粗颗粒WC含量增加而下降.当粗颗粒含量(质量分数)为50%时,WC-7%Co硬质合金具有较好的综合力学性能,其硬度(HV30)为15.9 GPa,抗弯强度和断裂韧性分别为2490 MPa和11.39 MPa·m1/2.    

16.  微波烧结粗晶低钴YG硬质合金存在的脱碳问题及其改进  
   鲍瑞  易健宏  杨亚杰  彭元东  张浩泽  娄静《粉末冶金材料科学与工程》,2012年第17卷第2期
   采用常规微波烧结法制备WC-Co硬质合金时,表层区域出现严重的脱碳现象,导致表层和中心区域的组织显著不同,即产生核壳结构,对合金的力学性能造成不利影响。本文作者以WC粉和Co粉为原料粉末,采用微波烧结法制备88%WC-12%Co(YG12)和94%WC-6%Co(YG6)硬质合金,在混料时添加炭黑,避免合金中脱碳相的生成。检验表明:当炭黑添加量(质量分数)接近0.2%时,YG12和YG6的抗弯强度(TRS)分别达到3 109和2 642 MPa;硬度(HRA)分别为88.7和89.8。此时,合金表面和中心区域具有一致的显微组织结构,没有发现脱碳相η(W3Co3C)。但当炭黑添加量超过0.2%时,大量析出的石墨相对合金的力学性能,尤其对硬度产生不利影响,当炭黑添加量为0.4%时,YG12和YG6的抗弯强度分别只有2 465 MPa和2 213 MPa。    

17.  粗细晶WC基体对WC-Co非均匀结构显微组织形成的影响  
   白英龙  吴冲浒  杨霞  徐猛  果世驹《粉末冶金技术》,2012年第30卷第2期
   本文研究了粗晶WC基体与细晶WC基体对WC-8Co合金的非均匀结构组织形成的影响。结果表明,粗晶WC为基体,细晶WC添加量35%以上时,形成粗、细WC晶粒尺寸分别为7.0~8.0μm、2.0~2.5μm的非均匀结构显微组织。细晶WC为基体,粗晶WC添加量为45%时,形成粗、细WC晶粒尺寸分别为6.0~7.0μm、0.4~0.5μm的非均匀结构显微组织。在合适的工艺参数条件下,可获得粗、细晶分别为8.0~9.0μm、2.0~3.0μm的非均匀结构的合金组织。    

18.  晶粒长大抑制剂对硬质合金性能的影响  
   高晓菊  贾平斌  王伯芊  赵斌  郭在在  杨双燕  张武《材料导报》,2014年第6期
   系统研究了不同粒度和不同配比量的晶粒长大抑制剂Cr3C2和VC单独添加或复合添加时,对WC-10%Co超细硬质合金力学性能和显微组织的影响。研究结果表明,WC-10%Co超细硬质合金的硬度随着晶粒长大抑制剂加入量的增加而升高,而随着晶粒长大抑制剂粒度的细化,硬度的最大值则存在对应的抑制剂粒度点;复合添加抑制剂m(VC)∶m(Cr3C2)=3∶2左右时,所得成分为WC-10Co-0.6VC-0.4Cr3C2,合金的综合性能较好,抗弯强度可达2954MPa,硬度HRA为91.9。    

19.  添加TiC对WC-Co基硬质合金组织和力学性能的影响  
   王丽利  李海艳  刘宁《热处理》,2010年第25卷第3期
   采用粉末冶金工艺制备了不同TiC含量的WC—Ti-Co硬质合金。测定了常温力学性能,并采用XRD、SEM和EDS等方法分析了材料的相结构、组织形貌。试验结果表明,添加少量细晶粒TiC可以细化硬质合金的显微组织,提高其相对密度和硬度,但降低合金的断裂韧度。当TiC添加量为1.2%时,材料的综合力学性能最佳。    

20.  高温中颗粒WC粉及其WC-6Co合金的组织和性能  
   雷纯鹏  唐建成  蔡旦瑜  吴爱华《稀有金属》,2013年第3期
   采用高温氢还原工艺制备中颗粒钨粉,经添加适量炭黑球磨混合后,分别置于管式石墨通氢碳化炉中于1950和1680℃长时间碳化获得高温中颗粒WC粉和普通中颗粒WC粉末,继而在H2保护气氛下于1470℃的温度下烧结制备出WC-6%Co(质量分数)烧结体。通过费氏粒度仪和马尔文粒度分布仪分别测定了WC粉体的平均粒度和粒度分布,采用X射线衍射(XRD)分析了碳化产物的相成分。用扫描电镜(SEM)观察了粉末的形貌和烧结体的显微组织结构,按硬质合金性能测试标准对WC-6%Co烧结体的物理和力学性能进行了测定;研究了高温WC粉对低钴硬质合金性能的影响,并与普通工艺生产的YG6合金的性能进行了对比分析。结果表明,高温氢还原工艺制备的中颗粒钨粉粒度均匀,经高温碳化后所获WC粉粒度粗化,颗粒尺寸均匀,且颗粒表面光滑、发育完整、亚晶粗大、晶格缺陷少、碳化完全、纯度较高。高温WC粉制备的WC-6%Co合金的显微组织均匀,且WC硬质相晶形完整,平均晶粒度2.0~2.5μm,硬度和抗弯强度分别为HRA90.0和3000 MPa,综合性能优于YG6牌号合金性能,因而在地矿工具、切削刀具,冲压模具等领域有较高的应用价值。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号