首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
采用分子动力学方法模拟了γ-TiAl在纳米尺度下的加工响应。采用规则生成的粗糙工件表面,研究其对原子去除机理的影响。通过改变织构密度和刀具半径,研究了切削过程。结果表明,工件表面形貌对亚表面缺陷的产生和原子去除有不可忽视的影响,粗糙表面会影响剪切模式下切削过程中层错剪切带的形成。提高织构密度增加了亚表面缺陷的数量,加工表面的完整性因切割方式的不同而不同。刀具的相对锐度对切削机制和纹理效果有一定影响。  相似文献   

2.
目的 研究碘化铯(CsI)晶体(110)晶面的力学性能和以及车削参数对超精密车削表面粗糙度的影响。 方法 分别采用纳米压痕和霍普金森压杆(SHPB)试验,获得并分析CsI晶体(110)晶面在准静态下和高应变率下的力学性能。采用单点金刚石车削(SPDT)的方法在不同的方向和车削参数对晶体进行超精密加工,并使用白光干涉仪、测力仪和红外热像仪分别测量超精密车削过程中已加工表面的粗糙度Ra、切削力和切削温度。结果 CsI晶体在压痕过程中主要发生塑性变形,且无明显的脆性裂纹,其(110)晶面的维氏硬度约为100 MPa。当应变率从6 000 s–1提高8 000 s–1时,晶体的屈服强度提高了7 MPa。在试验中,沿着270°方向车削,可以获得Ra为20 nm以下的表面粗糙度。沿着该方向使用10°前角的金刚石车刀、转速为 2 000 r/min、进给速度为4 μm/r、切削深度为2 μm时,可以获得最好的表面质量,平均表面粗糙度Ra为8.53 nm,最大表面粗糙度Ra为11.02 nm。结论 CsI晶体具有较强的塑性,且硬度低,高应变率下,材料的强度和硬度明显提高。通过提高转速即切削速度,增大超精密车削过程中的材料应变率,改善了软塑性材料的可加工性,使CsI晶体的表面粗糙度降低了80%。结合优选的车削方向、刀具前角、进给速度和切削深度等其他车削参数,获得了Ra在10 nm以下的光滑表面。  相似文献   

3.
基于五轴球头铣削加工过程中刀具偏离对工件表面形貌产生的影响,提出一种五轴球头铣削加工表面形貌预测和粗糙度分析模型。该模型结合铣削工艺参数如切削槽数量、进给速度、切削深度以及偏心率和刀具径向跳动产生的影响对表面形貌和粗糙度参数质量(平均粗糙度和均方根粗糙度)进行预测,同时模拟加工中刀具引导角和倾斜角对加工表面质量的影响。最后通过在不同切削条件下进行五轴球头铣削试验,验证了所提出的表面形貌预测模型的有效性。  相似文献   

4.
通过建立多尺度模型预测γ-TiAl合金中裂纹的扩展行为。利用分子动力学(MD)建立了真孪晶(TT)γ/γ界面模型,得到了界面内聚力区域(CZM)的本构参数;采用Voronoi方法生成了多晶γ-TiAl合金介观模型,将CZM本构参数耦合到该模型中,得到了对应的不含缺陷、含钝裂纹和钝裂纹+中心空洞缺陷的临界应力断裂云图,利用几何相似性平均了多晶模型和整体裂纹拉伸关系曲线并分析了γ-TiAl合金的损伤机理;根据连续介质假说建立了宏观有限元模型(FEM),通过对紧凑拉伸试样模拟给出了力-位移曲线并得到了材料的断裂韧性。最后,将宏观有限元模拟得到的裂纹扩展行为与实验结果进行比较,验证了该模型的有效性。结果表明:在晶粒数比例相同的情况下,缺陷对整个近γ结构的强度有着显著的敏感性,同时该多尺度方法可以有效地连接不同尺度并预测裂纹的扩展。  相似文献   

5.
目的 探究IC10单晶高温合金缓进磨削表面完整性的影响因素,提高关键零件的使用性能。方法 通过制备不同晶面、同一晶面不同晶向试块,采用刚玉砂轮在同一工艺参数下开展缓进磨削实验,研究各向异性对工件表面粗糙度、表面形貌、显微硬度和塑性变形层的影响。结果 在vs = 20 m/s,vw = 150 mm/min,ap = 0.2 mm条件下,不同晶面磨削后的平均表面粗糙度Ra为0.3~0.4 μm,其中(001)晶面加工后的平均表面粗糙度Ra为0.32 μm,加工纹理均匀且轮廓起伏变化程度最小,(011)晶面的平均表面粗糙度Ra为0.35 μm,(111)晶面的平均表面粗糙度Ra为0.39 μm,其表面出现了深的犁沟及凹坑等现象;不同晶面加工后工件表面均发生了硬化,硬化程度由强到弱依次为(001)、(011)、(111)晶面;不同晶面磨削后表面存在微米级厚度的塑性变形层,其中(111)晶面塑性变形层最厚,厚度为3.6 μm,(011)和(001)晶面的厚度分别为2.8、2 μm。(001)晶面在不同晶向磨削后工件的表面粗糙度、表面形貌、显微硬度和塑性变形层则无明显的规律性变化。结论 IC10单晶高温合金各向异性对磨削后工件表面完整性具有一定影响,不同晶面由于塑性变形难度存在差异,导致磨削后其表面完整性存在规律性变化,其中(001)晶面加工后的表面粗糙度最低,加工纹理最平整,显微硬度最大,塑性变形层厚度最小。由于显微组织呈现随机分布的圆形、方形、三角形等形态,且不规则,导致同一晶面不同晶向对磨削后工件表面完整性的影响无明显规律。  相似文献   

6.
为研究漂珠/镁合金可溶复合材料的切削加工质量,采用正交试验法对漂珠/镁合金可溶复合材料进行了不同切削参数下的切削加工试验。研究结果表明:进给量对切削加工表面粗糙度影响最大,其次是切削深度,切削速度影响最小;试样表面微观形貌呈平行沟槽状,且其深度和宽度随粗糙度的增大而增大;进给量通过影响试样表面相邻锯齿峰之间的宽度影响试样表面粗糙度;运用回归分析法建立了漂珠/镁合金可溶复合材料切削加工表面粗糙度预测模型,并通过方差分析和实验验证表明模型拟合良好,可以实现对复合材料切削加工表面粗糙度的预测和控制。  相似文献   

7.
谢英星 《机床与液压》2014,42(15):150-153
采用单因素试验法和正交试验法,在高速加工中心上对模具钢3Cr2NiMo进行切削试验,通过改变影响加工过程的切削参数:主轴转速、进给速度、轴向切削深度和径向切削深度,研究了影响工件加工表面粗糙度值程度的因素。结果表明:增大机床的主轴转速,粗糙度值显著降低,而增大进给速度、轴向铣削深度,粗糙度值增大,但增大的幅度不同,径向铣削深度的影响不明显。  相似文献   

8.
通过分子动力学模拟方法建立了单晶γ-TiAl合金的纳米切削模型和拉伸力学模型,研究了不同的切削深度对工件力学性能的影响。首先详细分析了切削过程中晶格转变和微观缺陷演化之间的关系;然后系统探讨了不同的切削深度对工件应力-应变曲线、位错形核位置和断口位置的影响。研究结果表明:在纳米切削过程中,晶格转变数量随着切削深度的增加而增加,并且与微观缺陷演化具有一致性;在一定切削深度范围内,切削后工件的屈服应力和弹性模量会有所提高。另外,切削深度对工件的位错形核位置和断口位置有较大的影响,切削后工件位错形核于工件的亚表面,而未经切削的工件其位错形核于边界处;工件的断口位置随着切削深度的增加向拉伸端靠近。  相似文献   

9.
采用热丝CVD法制备纳米金刚石薄膜涂层刀具,利用场发射扫描电子显微镜表征薄膜的表面形貌,并用已制备的CVD金刚石涂层刀具,在无润滑干切条件下高速铣削7075铝合金工件,对其精铣工艺参数进行单因素及正交试验,探索精铣后工件的表面粗糙度变化规律并进行工艺参数优化。结果表明:随着主轴转速n从5000 r/min提高到8000 r/min, 工件平均表面粗糙度在逐级缓慢降低;当进给速度vf在1000~7000 mm/min范围内,随着vf提高工件平均表面粗糙度快速增大,在vf为7000 mm/min时,其值达1.790 μm;当轴向切削深度ap在0.1~0.4 mm范围内,随着ap提高,工件平均表面粗糙度逐步增大,但ap在0.2 mm之后其增大趋势变缓。对7075铝合金工件精铣表面粗糙度影响最大的是vf,其次为n,ap的影响最弱;其精铣的最优参数组合是ap=0.2 mm、vf=1 000 mm/min、n=8 000 r/min,精铣后的表面粗糙度平均值为0.516 μm。选用纳米金刚石薄膜涂层刀具精铣7075铝合金时,为得到较低的表面粗糙度,应选择高主轴转速、低进给速度、合适的轴向切削深度。   相似文献   

10.
张祥  马小刚  韩冰 《表面技术》2022,51(12):269-276
目的 解决大型导磁类零件内表面的精密研磨加工困难、加工效率低等问题。方法 采用旋转磁极方法对内表面进行磁粒研磨。工件由车床主轴驱动旋转,将磁极伸入工件内部,并在电机驱动旋转的同时,随着车床刀架往复进给,驱使磁极与工件内表面之间填充的磁性磨粒摩擦工件表面,完成对工件内表面的光整加工。利用ADAMS软件对有理数和无理数转速比下的研磨轨迹进行模拟,讨论不同转速比对研磨轨迹和工件表面质量的影响;采用响应面法将影响研磨的主要工艺参数(工件转速、磁极转速、磁性磨粒粒径)进行优化设计;通过研磨试验分析表面形貌和表面粗糙度数据,验证优化后工艺参数的可靠性。结果 采用响应面法分析可知,当工件转速为98 r/min、磁极转速为2 435 r/min、磁性磨粒粒径为190 μm、磁粒研磨加工时间为40 min时,工件的表面粗糙度从原始Ra 3.32 μm降至Ra 0.198 μm,表面粗糙度改善率(ΔRa)为94.04%。工件表面划痕、加工纹理等表面缺陷得到了有效去除,加工后工件表面更加光亮、均匀,大幅提高了工件的使用寿命。结论 当磁极与工件的转速比为无理数时,其研磨效果最好,研磨轨迹的干涉效果更好,单位面积内的交错次数更多,交织出的网状结构网格更均匀、致密,未加工区域面积更小。采用响应面法能够对试验结果进行优化参数数学建模设计,拟合出的最佳工艺参数组合可提高大型导磁材料轴套类零件的加工效率和表面质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号