首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of magnesium alloys show promise as engine block materials. However, a critical issue for the automotive industry is corrosion of the engine block by the coolant and this could limit the use of magnesium engine blocks. This work assesses the corrosion performance of conventional magnesium alloy AZ91D and a recently developed engine block magnesium alloy AM‐SC1 in several commercial coolants. Immersion testing, hydrogen evolution measurement, galvanic current monitoring and the standard ASTM D1384 test were employed to reveal the corrosion performance of the magnesium alloys subjected to the coolants. The results show that the tested commercial coolants are corrosive to the magnesium alloys in terms of general and galvanic corrosion. The two magnesium alloys exhibited slightly different corrosion resistance to the coolants with AZ91D being more corrosion resistant than AM‐SC1. The corrosivity varied from coolant to coolant. Generally speaking, an organic‐acid based long life coolant was less corrosive to the magnesium alloys than a traditional coolant. Among the studied commercial coolants, Toyota long life coolant appeared to be the most promising one. In addition, it was found that potassium fluoride effectively inhibited corrosion of the magnesium alloys in the studied commercial coolants. Both general and galvanic corrosion rates were significantly decreased by addition of KF, and there were no evident side effects on the other engine block materials, such as copper, solder, brass, steel and aluminium alloys, in terms of their corrosion performance. The ASTM D 1384 test further confirmed these results and suggested that Toyota long life coolant with 1%wt KF addition is a promising coolant for magnesium engine blocks.  相似文献   

2.
The corrosion behaviour of magnesium alloys is not substantially comparable to other metals, such as iron, nickel and copper. It is always accompanied by hydrogen evolution. More hydrogen is evolved at a more positive potential or a higher anodic current density. The ‘strange’ hydrogen evolution behaviour is a common phenomenon for magnesium alloys and it is called negative difference effect (NDE). The NDE continues to receive considerable discussion. Furthermore, the corrosion behaviour of magnesium alloys depends mainly on the pH value of the surrounding electrolyte. Voluminous reaction products, formed in neutral electrolytes, lead to a diffusion‐controlled dissolution on the surface of the underlying magnesium alloy. Therefore, influences from structure and alloying are suppressed very strongly. In alkaline environments, passivation occurs as a result of the formation of a hydroxide layer on the magnesium surface. Therefore, differences in the corrosion behaviour between the alloys are hardly detectable. Measurable effects can only be detected using very ‘aggressive’ corrosion conditions. Present methods do not adequately take into account the specific character of the corrosion of magnesium alloys. It can be better characterized using a rotating disc electrode for electrochemical measurements, which enables model defined flow conditions on the surface. Furthermore, the application of electrochemical noise offers the possibility of a simple and sensitive assessment of the corrosion susceptibility of magnesium alloys. Due to the high sensitivity of this measurement procedure, it is also possible to carry out examinations under more practical conditions.  相似文献   

3.
The global trend toward decreasing of atmospheric pollution, by saving fuel consumption in vehicles, has led to extensive interest of using lightweight metals such as magnesium alloys, in engine and cooling system components. The modern coolant is not intended to prevent corrosion of magnesium alloy in the engine cooling systems. We have developed a new coolant that aims to protect Mg alloy parts together with all other commonly used metals. Several inhibitor formulations were tested, according to glassware test (ASTM D1384) and heat transfer conditions (ASTM D4340). Mg alloys EZ33 and WE43 were added to the standard sets of metals and the corrosivity of different types of formulations was determined by weight loss measurements. The new anticorrosive coolant showed high performance in all tested metals including magnesium alloys and it satisfied the requirements (ASTM D3306). Cyclic potentiodynamic polarization curves have been used to study electrochemical corrosion behavior of the magnesium alloys EZ33 and WE43 in aqueous solution containing the inhibitors and ethylene glycol (33 vol%‐EG prepared with corrosive water according to ASTM D1384) and compared to a reference coolant with no inhibitor. It was found that a passive film was created upon the Mg alloys, which exhibited high corrosion resistance against pitting.  相似文献   

4.
纯镁的生物腐蚀研究   总被引:20,自引:0,他引:20  
任伊宾  黄晶晶  杨柯  张炳春  姚治铭  王浩 《金属学报》2005,41(11):1228-1232
镁及其合金作为生物医用材料具有明显的优势,可以利用其耐蚀性差的特点,发展新型医用可降解镁金属材料.本文选择纯镁为主要研究对象,从杂质含量、加工处理状态等方面研究了两种纯镁在生理盐水中的腐蚀规律,表明降低纯镁中杂质元素的含量和细化晶粒可以提高纯镁在生理盐水中的开路腐蚀电位,减缓腐蚀速率.纯镁的腐蚀速率可以通过调整杂质含量、晶粒细化和固溶处理等方法进行控制,适宜发展成为一类新型的医用可降解金属材料.  相似文献   

5.
本文针对可降解吸收的医用镁合金的耐腐蚀性较差、在临床上的应用受到了很大的限制的问题,介绍了3种典型医用镁合金耐腐蚀性能的变化和近几年有关可降解医用镁合金的腐蚀研究进展,总结了研究可降解医用镁合金耐腐蚀性能的实验方法和结果。结论是未来医用镁合金既要充分发挥其可降解吸收的优点,又要把控好在人体服役期间的降解速度。  相似文献   

6.
The corrosion behaviours of four kinds of rolled magnesium alloys of AZ31, AZ91, AM60 and ZK60 were studied in 1 mol/L sodium chloride solution. The results of EIS and potentiodynamic polarization show that the corrosion resistance of the four materials is ranked as ZK60>AM60>AZ31>AZ91. The corrosion processes of the four magnesium alloys were also analyzed by SEM and energy dispersive spectroscopy(EDS). The results show that the corrosion patterns of the four alloys are localized corrosion and the galvanic couples formed by the second phase particles and the matrix are the main source of the localized corrosion of magnesium alloys. The corrosion resistance of the different magnesium alloys has direct relationship with the concentration of alloying elements and microstructure of magnesium alloys. The ratio of the β phase in AZ91 is higher than that in AZ31 and the β phase can form micro-galvanic cell with the alloy matrix, as a result, the corrosion resistance of AZ31 will be higher than AZ91. The manganese element in AM60 magnesium alloy can form the second phase particle of AlMnFe, which can reduce the Fe content in magnesium alloy matrix, purifying the microstructure of alloy, as a result, the corrosion resistance of AM60 is improved. However, due to the more noble galvanic couples of AlMnFe and matrix, the microscopic corrosion morphology of AM60 is more localized. The zirconium element in ZK60 magnesium alloy can refine grain, form stable compounds with Fe and Si, and purify the composition of alloy, which results in the good corrosion resistance of ZK60 magnesium alloy.  相似文献   

7.
Surface contaminants as a result of thermo-mechanical processing of magnesium alloys, e.g. sheet rolling, can have a negative effect on the corrosion resistance of magnesium alloys. Especially contaminants such as Fe, Ni and Cu, left on the surface of magnesium alloys result in the formation of micro-galvanic couples and can therefore increase corrosion attack on these alloys. Due to this influence they should be removed to obtain good corrosion resistance.In this study, the effect of inorganic acid pickling on the corrosion behaviour of a commercial AZ31 magnesium alloy sheet was investigated. Sulphuric, nitric and phosphoric acids of different concentrations were used to clean the alloy for various pickling times. The surface morphology, composition and phases were elucidated using scanning electron microscopy, X-ray fluorescence analysis, spark discharge-optical emission spectroscopy, energy dispersive X-ray spectroscopy and infrared spectroscopy. The effect of surface cleaning on the corrosion properties was studied using salt spray test and electrochemical impedance spectroscopy. The experimental results show that acid pickling reduces the surface impurities and therefore enhances the corrosion resistance of the alloy. The cleaning efficiency of the three acids used and the corrosion protection mechanisms were found to be remarkably different. Best corrosion results were obtained with nitric acid, followed closely by phosphoric acid. Only the sulphuric acid failed more or less when cleaning the AZ31 sheet. However, to obtain reasonable corrosion resistance at least 5 μm of the surface of AZ31 magnesium alloy sheet have to be removed.  相似文献   

8.
Mg合金的腐蚀与防护   总被引:77,自引:5,他引:77  
介绍了Mg合金的腐蚀原理、腐蚀类型以及合金元素在镁合金中的作用。综述了Mg合金的化学转化膜、阳极氧化、微弧氧化、化学镀等经典的表面处理方法 ,以及快速凝固工艺和表面改性技术对Mg合金表面耐蚀性能的影响。Mg合金易发生全面腐蚀、电偶腐蚀、点蚀、应力腐蚀和高温氧化。解决Mg合金腐蚀的方法有 :一是研究新合金 ,提高Mg合金自身的热力学稳定性 ,稀土Mg合金是最有前途的耐蚀合金 ;二是通过表面处理使Mg合金表面富SiO2 和Al2 O3 、含SiC和F-等物质或获得的非晶态的涂层结构能有效地提高Mg合金的耐蚀耐磨性能 ;三是改进加工工艺 ,快速凝固和激光退火不仅能获得力学性能优秀的Mg合金产品 ,还能获得纳米结构的表面涂层防护膜 ,提高Mg合金的耐蚀耐磨性能。使镁合金表面涂层结构纳米化、玻璃化是表面处理工艺的发展趋势。  相似文献   

9.
Surface melting of a magnesium alloy, ZE41 (4%-Zn, 1%-RE) was performed to achieve electrochemical homogeneity at the surface by microstructure refinement. Large secondary precipitates are particularly known to cause severe pitting in magnesium alloys. The corrosion resistance of the laser treated and untreated alloy was investigated by potentiodynamic polarisation and electrochemical impedance spectroscopy. Contrary to the reported behaviour of other magnesium alloys (such as AZ series alloys), laser surface melting did not significantly improve the corrosion resistance of ZE41. This observation is attributed to the absence of beneficial alloying elements such as Al in ZE41 alloy.  相似文献   

10.
Corrosion behaviour of magnesium in ethylene glycol   总被引:1,自引:0,他引:1  
Corrosion of magnesium engine components by coolant is an important issue in the automotive industry where magnesium alloys may be used. It is of significance to understand the corrosion behaviour of pure magnesium in ethylene glycol solutions, as this can provide a basis for developing new coolants for magnesium alloy engine blocks. In this paper, through corrosion and electrochemical tests, it was found that the corrosion rate of magnesium decreased with increasing concentration of ethylene glycol. Individual contaminants, such as NaCl, NaHCO3, Na2SO4 and NaCl can make aqueous ethylene glycol solution more corrosive to magnesium. However, in NaCl contaminated ethylene glycol, NaHCO3 and Na2SO4 showed some inhibition effect. The solution resistivity played an important role in the corrosion of magnesium in ethylene glycol solutions, and the competitive adsorption of ethylene glycol and the contaminants on the magnesium surface was also responsible for the observed corrosion behaviours. The corrosion of magnesium in ethylene glycol can be effectively inhibited by addition of fluorides that react with magnesium and form a protective film on the surface.  相似文献   

11.
Abstract

Studies on the anode efficiency of magnesium and its alloys in battery electrolytes such as magnesium perchlorate, magnesium bromide, and magnesium chloride solutions were made by galvanostatic polarisation and corrosion rate measurements. The open circuit potential and corrosion rate of magnesium increase when lead is present in the alloy. The corrosion rates were observed to follow the order Mg> AP65 (Mg?(6·0?7·0) Al?(4·4?S·0)Pb) > AZ61(Mg?(5·8?7·2)Al?(0·5?1·5)Zn) > AZ31(Mg?(2·5?3·5)Al?(0·6?1·4)Zn) in all three electrolytes. Anode efficiency increased with increasing current density up to 40 mA cm?2, but decreased above this level. Galvanostatic polarisation results indicated that corrosion of magnesium and its alloys in these electrolytes occurs under cathodic control. Of the tested alloys, AZ31 and AZ61 were found to be most suitable in respect of corrosion rate and anode efficiency in 2M Mg(ClO4)2 solution.  相似文献   

12.
医用镁合金表面改性研究进展   总被引:8,自引:0,他引:8  
由于镁及其合金具有良好的生物相容性和力学相容性,降低镁合金过快的腐蚀速度成为其作为生物材料应用的关键,医用镁合金表面改性已成为新一代生物材料的研究重点。介绍医用镁合金的发展历程,重点讨论镁合金表面生物活性陶瓷(如羟基磷灰石(HA))、阳极氧化膜、可降解高分子聚合物(如聚乳酸(PLA)、PLGA、壳聚糖)、惰性生物陶瓷涂层(如TiO2、Al2O3、ZrO2)、化学转化膜(氟化膜、稀土转化膜)和金属镀层(如Ti、Zn)制备、耐蚀性及其生物相容性,并指出其发展趋势。  相似文献   

13.
镁及镁合金在NaCl水溶液中的腐蚀行为   总被引:1,自引:0,他引:1  
研究了纯Mg、AZ31和AZ91D镁合金在pH=12,浓度为5%的NaCl溶液中的腐蚀行为,从腐蚀形貌和腐蚀速率等方面对其进行了定性和定量描述,并对其腐蚀杌理进行了探讨.随着腐蚀时间的延长,纯Mg,AZ31和AZ91D镁合金的腐蚀速率呈现出先急剧减小再缓慢降低,最后达到一个稳定值的趋势.同时,随着合金中Al含量的提高,镁合金腐蚀速率降低,因此AZ91D镁合金表现出比AZ31镁合金更好的耐腐蚀性能.  相似文献   

14.
镁及镁合金因其密度低、弹性模量与硬组织匹配、可降解吸收以及具有优异的生物相容性等优点已成为可降解生物材料领域的研究热点。但镁合金体内降解速率过快且降解时产生析氢反应并引发局部pH环境升高,这会影响周围组织的生长,甚至会发生溶血、溶骨现象,这严重限制其在临床上应用。采用添加适当合金元素以及镁合金表面改性被认为是减缓镁合金腐蚀速率以期达到其降解行为可控的有效方法。综述了可降解镁合金抗菌性和溶血性能的研究状况,系统阐述了近5年来可降解镁合金生物相容性的最新进展,展望了医用可降解镁合金未来的研究方向和挑战。  相似文献   

15.
The corrosion protection afforded by a cerium conversion coating, formed by immersion in a solution containing rare earth salt and hydrogen peroxide, on pure magnesium and two magnesium alloys, AZ91 and AM50, has been studied. The effect of HCl pre-treatments on the morphology and on the corrosion resistance of the cerium conversion layer was investigated. A thicker and more homogeneous distribution of the conversion coating was obtained when the sample surface was pre-treated with acid. Higher amounts of cerium on the surface of the pre-treated samples were detected. The cerium conversion coating increased the corrosion resistance of the alloys because it ennobled the corrosion potential and decreased both the anodic and cathodic current. The acid pre-treatment further increased the corrosion resistance of the coated alloys. After five days of immersion in chloride environment the untreated samples showed localized corrosion while the chemical conversion coated samples appeared unaffected.  相似文献   

16.
Magnesium alloys have emerged as potential structural materials with all capabilities to even replace close contenders; aluminium alloys in weight-critical applications. High susceptibility to corrosion being the only limitation, corrosion of magnesium alloys continues to gather much attention among the material scientists worldwide. ZE41 is one such alloy of magnesium which is increasingly gaining importance as automobile and aerospace material. In the present study the influence of the medium pH and sulfate ion concentrations on the corrosion behavior of magnesium alloy ZE41 has been investigated using electrochemical techniques like the Tafel extrapolation and electrochemical impedance spectroscopy (EIS). The tests have been carried out in a range of conditions, with gradually varying pH and sulfate ion concentration. The morphology and composition of the corroded alloy surface have been determined by the scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) analysis, respectively. The recorded results reflect a trend of a higher corrosion rate associated with a higher sulfate concentration at each pH and with a lower pH at each sulfate concentration.  相似文献   

17.
AZ series Mg alloys AZ31, AZ61, and AZ80 are widely applied in 3C (computer, communication, and consumer electronic) industry. Their corrosion characters in simulated sweat solution have been investigated by electrochemical technology, surface analysis, and pH measurements. Electrochemical test results showed that the three magnesium alloys revealed different corrosion resistance (Rt) in simulated sweat solution, Rt(AZ31) < Rt(AZ61) < Rt(AZ80). Three major components of simulated sweat solution played different roles during corrosion processes. Lactic acid was a kind of strong erosive medium for the magnesium alloys, and NaCl can induce pitting corrosion on alloys surface, while urea acted as a corrosion inhibitor. The corroded surface morphology of the three magnesium alloys was observed using scanning electron microscopy (SEM) and corrosion products were analyzed by X‐ray diffraction (XRD). Result of pH measurement tests showed that there were differences in climbing speed and final values of pH for the three magnesium alloys in simulated sweat solution.  相似文献   

18.
The corrosion performance of anodised magnesium and its alloys, such as commercial purity magnesium (CP-Mg) and high-purity magnesium (HP-Mg) ingots, magnesium alloy ingots of MEZ, ZE41, AM60 and AZ91D and diecast AM60 (AM60-DC) and AZ91D (AZ91D-DC) plates, was evaluated by salt spray and salt immersion testing. The corrosion resistance was in the sequential order: AZ91D ≈ AM60 ≈ MEZ ? AZ91D-DC ? AM60-DC > HP-Mg > ZE41 > CP-Mg. It was concluded the corrosion resistance of an anodised magnesium alloy was determined by the corrosion performance of the substrate alloy due to the porous coating formed on the substrate alloy acting as a simple corrosion barrier.  相似文献   

19.
Post-treatment of thermal spray coatings on magnesium   总被引:1,自引:0,他引:1  
Magnesium alloys have a beneficial combination of high strength to weight ratio, good machinability and high recycling potential. Despite this, the application of magnesium still is behind that of other constructive materials mainly due to low wear and corrosion resistance. For more demanding applications, a large amount of surface treatment methods are developed to overcome this problem. Thermal spraying is an efficient and flexible method of coating deposition and is widely used for protection of different materials against corrosion and wear. Nevertheless, the bonding of thermal spray coatings on magnesium alloys is not sufficient, so the following post-treatment processes are needed. One of such possibilities is high energy beam treatment of thermally sprayed coatings. During the heat treatment of magnesium substrates with coating the remelting of coating and a thin surface layer of substrate occurs. Depending on the combination of applied coating system and treatment method, different processes can be realised in modified layers: the alloying of magnesium substrate with other elements to improve corrosion properties, redistribution of hard particles from composite coating and new phases formation during the processing to improve the wear resistance of magnesium alloys. In the present work some examples concerning the laser and electron beam treatment of aluminium based composite coatings as well as infra red irradiation of zinc based coatings are described. Coatings are deposited on magnesium substrates (AM20, AZ31, AZ91) by arc spraying with Zn, ZnAl4 and ZnAl15 solid wires and cored wires in aluminium core with powder filling containing different hard particles, such as boron, silicon and tungsten carbide or titanium oxide. Remelting of thermal spray coatings is carried out by means of continuous irradiation of СО2-laser in nitrogen or argon atmosphere, electron beam in vacuum and focused tungsten halogen lamp line heater in atmosphere. Microstructure of sprayed coatings as well as that of modified surface layers is investigated by metallographic methods. Corrosion properties are estimated by electrochemical measurements. Abrasion wear resistance of the modified layers is determined by scratch test, corundum grinding disk test and Rubber wheel test. It is shown that all methods applied for processing of thermal spray coatings lead to formation of modified surface layers in magnesium substrate with improved wear and corrosion properties. Different mechanisms of microstructure formation such as redistribution of chemical composition of composite coating components, partial remelting of hard phase particles, and new phases formation are discussed. Electrochemical behaviour of modified surface layers is mostly improved due to alloying, homogenization of element distribution and strong decrease of as-sprayed coating porosity. Abrasion wear resistance of processed magnesium substrates strongly depends on the microstructure and usually is 5 to 20 times higher compared with base material.  相似文献   

20.
Magnesium alloys, as a new generation temporary biomaterial, deserve the desirable biocompatibility and biodegradability, and also contribute to the repair of the damaged bone tissues. However, they do not possess the required corrosion resistance in human body fluid. Hot mechanical workings, such as extrusion, influence both the mechanical properties and bio-corrosion behavior of magnesium alloys. This review aims to gather information on how the extrusion parameters (extrusion ratio and temperature) influence the bio-corrosion performances of magnesium alloys. Their effects are mainly ascribed to the alteration of extruded alloy microstructure, including final grain size and uniformity of grains, texture, and the size, distribution and volume fraction of the second phases. Dynamic recrystallization and grain refinement during extrusion provide a more homogeneous microstructure and cause the formation of basal texture, resulting in improved strength and corrosion resistance of magnesium alloy. Extrusion temperature and extrusion ratio are reported as the influential factors in the degradation. The reports reveal that the increase in extrusion ratio and/or the reduction in extrusion temperature cause a decrease in the final grain size, leading to intensification of basal texture, in parallel side of the samples with extrusion line, and to lower volume fraction and size of precipitates in magnesium alloys. These all lead to improving the bio-corrosion resistance of the magnesium alloy implants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号