首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Al—Zn—Mg—Cu系高强铝合金RRA处理   总被引:2,自引:0,他引:2  
美国已将回归应用于Al-Zn-Mg-Cu系高铝合金RRA处理上,RRA即回归再时效处理,分三个阶段(T6状态,回归,再时效)在RRA基础又开发出T77处理,使7150合金和7055新合金的强度和耐蚀性有最佳的结合,并将在波音77客机上制做零部件。  相似文献   

2.
3.
7075铝合金经T6回火后(120℃,24h)分别进行160℃,29min; 180℃,9min;200℃,2min;220℃,30s回归时效处理,160℃和180℃回归时效样品在120℃重复时效38h,200℃和220℃回归时效样品在120℃重复时效24h.RRA后材料的机械强度和应力腐蚀强度均高于T6回火样品.应力强度因子中的裂纹生长速率降低到10-10m/s,但随回归时效温度升高而增大,其极限值与T7回火样的裂纹生长速率相当.微分扫描式量热法(DSC)、TEM及SAED分析了经不同制度处理…  相似文献   

4.
7055超强铝合金时效硬化特性与应力腐蚀性能研究   总被引:9,自引:0,他引:9  
研究了7055超强铝合金挤压板材的时效硬化特性和应力腐蚀性能。结果表明:7055铝合金在120℃长期单级时效存在三峰强化现象,三峰位置分别在30h、105h、130h,其主要强化相分别为GP区、η’相和η相,其第一峰出现比7050、7175合金的推迟6h。另外,随时效时间延长,7055合金的应力腐蚀敏感性指数降低,合金的抗应力腐蚀性能变好。  相似文献   

5.
测试7A55铝合金在常规RRA和连续RRA处理过程中不同状态点的抗拉强度和电导率,并通过TEM 观察 7A55铝合金在常规RRA处理和连续RRA过程中的微观组织演变。结果表明,7A55铝合金无论采用常规RRA处理还是连续RRA处理,在高温回归过程中,晶内析出大量与基体不共格相(大量η′相和一些η相),同时晶界η相严重粗化并出现无沉淀析出带,电导率有大幅上升。另外,采用连续RRA处理工艺,1级时效后在适当的升温速度下,直接升温至回归温度进行回归处理,可以获得接近第1级时效的强度和38.1%IACS的电导率。  相似文献   

6.
设计一种新型A1-Mg-Si-Cu铝合金,合金成分为Al-1.04Mg-0.85Si-0.018Cu(质量分数).采用金相观察、差热分析(DTA)、扫描电镜(SEM)和能谱分析(EDS)研究合金铸态与均匀化态的显微组织演化和成分分布.结果表明:新型A1-Mg-Si-Cu铝合金的铸态组织枝晶偏析严重,合金元素Si、Mg和Fe在晶内及晶界分布不均匀;550℃×24h均匀化处理后,合金中非平衡低熔点共晶组织和Mg2Si相基本溶入基体,Fe元素偏析难以通过均匀化消除,均匀化后,晶界上部分β-A15FeSi相转变成α-Al8Fe2Si相;该合金的过烧温度为574.5℃,最佳均匀化制度为550℃×24h;合金铸态和均匀化后维氏硬度分别为58HV和78HV,比6061合金分别提高了20%和85%.  相似文献   

7.
研究了不同时效制度下7055铝合金硬度及电导率的变化规律,分析了化学成分对7055铝合金时效峰推迟的影响。  相似文献   

8.
系统研究了RRA处理过程回归制度对7A20铝合金组织性能的影响,测试了力学性能和电导率,利用OM和TEM(HRTEM)表征了晶界和晶内的微观组织结构。结果表明:在160 ℃的回归温度下,随回归时间的延长,抗拉强度由630 MPa降低到525 MPa;经120 ℃保温12 h的再时效处理后,抗拉强度由645 MPa升高到710 MPa;回归时间越长,再时效引起的强度增量越大,80 min时达到最大值185 MPa。在200 ℃的回归温度下,回归时间为10 min时,便达到峰值强度715 MPa。随回归温度提高,导电率先升高后降低,与回归时间呈正相关关系。经160、200和240 ℃下峰值强度对应的回归处理后,基体晶粒尺寸分别为55、65和70 μm,相差不大。200 ℃×10 min的回归处理+再时效处理后,晶界处存在不连续的MgZn2相,尺寸在10~20 nm,与基体呈非共格关系;晶内存在弥散分布的纳米级η′强化析出相,与基体呈共格或者半共格关系;晶界处存在45~55 nm宽度的PFZ(Precipitation free zone)区。  相似文献   

9.
研究了不同时效制度下7055铝合金的微观组织,分析了不同显微组织对7055铝合金性能的影响。  相似文献   

10.
时效制度对7475铝合金组织与性能的影响   总被引:4,自引:0,他引:4  
通过对不同时效制度下的常温拉伸性能、硬度、电导率、抗应力腐蚀性能、断裂韧性等性能测试及微观组织观察,分析不同时效制度对7475铝合金挤压型材的微观组织与性能影响。结果表明,单级峰值时效(T6)具有很高的强度,但抗应力腐蚀性能较差,主要是因为晶界析出物的性质所决定的;双极时效(T76、T73)由于晶界析出物呈粗大和弧立状分布,具有较好的抗应力腐蚀性能,但由于过时效晶内析出相尺寸增大,强度有较大程度的下降。同时实验表明,时效制度对7475挤压型材断裂韧性的影响并不大。  相似文献   

11.
Single-aging characteristics of 7055 aluminum alloy   总被引:3,自引:0,他引:3  
The microstructures and properties of 7055 aluminum alloy were studied at different single-aging for up to 48 h using hardness test, tensile test, electrical conductivity measurement, XRD and TEM microstructure analysis. The results show that at the early stage of aging, the hardness and strength of the alloy increase rapidly, the peak hardness and strength are approached after 120 ℃ aging for 4 h, then maintained at a high level for a long time. The suitable single-aging treatment of 7055 alloy is 480 ℃, 1 h solution treatment and water quenching, then aging at 120 ℃ for 24 h. Under those condition, the tensile strength, yield strength, elongation and electrical conductivity of the studied alloy are 513 MPa, 462 MPa, 9.5% and 29%(IACS), respectively. During aging, the solid solution decomposes and precipitation occurs. At the early aging stage of 120 ℃, GP zones form and then grow up gradually with increasing ageing time. η′ phase forms after ageing for 4 h and η phase starts to occur after 24 h aging.  相似文献   

12.
1 INTRODUCTIONAl Zn Mg Cuserieshigh strengthaluminumal loyswithhighstrength to densityratioandexcellentmechanicalpropertieshavebeentheprimarystruc turalmaterialsofaerocraftinthespaceandgroundtransportationvehicles.Thedevelopmentandexten siveutilizationofhigh strength 7xxxseriesareham peredby poorcorrosionresistance ,especiallystresscorrosioncracking (SCC )resistance .Overthe pastfewyears ,thestudiesaboutstresscorrosioncrackingandageingtreatmentprocesshavebeenproceedinginordertoobtainma…  相似文献   

13.
通过末端淬火的方法研究7055铝合金厚板的淬透性,采用透射电子显微镜对微观组织进行分析。结果表明:该合金板材的淬透深度可达45 mm,使其淬透的冷却速率需大于230℃/min;随着冷却速率的减小,淬火过程析出平衡相的数量和尺寸增加,时效后析出的η′沉淀强化相的数量减少,晶界无沉淀析出带宽度增加;在所研究的冷却速率范围内,时效后铝合金板材的硬度、晶界无沉淀析出带宽度与冷却速率的对数均呈线性关系。  相似文献   

14.
结合光学显微镜(OM)、扫描电镜(SEM)以及透射电镜(TEM)等,对非等温时效处理后7055铝合金的组织、硬度、拉伸和抗腐蚀性能进行了研究。结果表明:合金的硬度和强度在60~120℃快速增加,随后缓慢上升并于160℃达到峰值,在时效后期则呈直线下降,伸长率的变化趋势与之相反。非等温时效过程中,起始温度、终止温度及升温速率会对合金的性能有一定影响。升温时效至160℃,合金不仅能够满足T6态的力学性能要求,同时能获得较好的抗腐蚀性能。   相似文献   

15.
通过拉伸试验、TEM观察、EDS分析等手段研究了时效处理对7055超高强铝合金力学性能及微观组织的影响,并最终确定了7055铝合金合理的时效工艺。结果表明,7055铝合金的最佳单级时效工艺为120 ℃×4 h,时效后的抗拉强度达到660 MPa。TEM分析结果表明7055铝合金在120 ℃时效4 h时主要析出相为GPI区,至时效8 h时,基体内开始出现η'相与GPI区并存,随着时效时间的延长,合金中的η'相体积分数不断增加,到时效时间为24 h,合金晶内析出相基本以η'相为主。  相似文献   

16.
时效处理对7050T451合金组织及性能的影响   总被引:1,自引:0,他引:1  
采用室温拉伸和断裂韧性测试方法,借助扫描电镜、透射电镜等设备,研究时效处理对7050T451铝合金性能的影响及材料微观组织形貌演变。结果表明,160℃时效时,随着时效时间的增加,晶界析出的粗大η相增多,晶界无析出带变宽,7050T451铝合金晶粒内部弥散分布的细小η′相密度增加,成为主要强化相,材料强度提高,延伸率下降;7050T451晶界析出相体积分数随时效时间增加,降低材料断裂韧性;晶粒内残留位错处易析出粗大η相,但数量较少,对材料性能无明显影响。  相似文献   

17.
固溶处理对高纯7055铝合金组织的影响   总被引:7,自引:0,他引:7  
采用光学显微镜(OM)、扫描电镜(SEM)和X射线衍射谱仪研究了固溶处理对高纯7055铝合金组织的影响。结果表明:合金固溶时,粗大的初生AlZnMgCu相溶解缓慢,并逐渐球化;而初生AlZnMgCuFeTi相几乎不溶解。固溶温度越高(460-480℃),时间越长(0-240min),初生AlZnMgCu相溶解越多,再结晶越多,晶粒尺寸越大。再结晶主要于初始晶界上的粗大初生相上形核(PSN机制),并向弥散Al3Zr粒子少的变形晶粒内部长大。490℃固溶时,出现过烧组织,晶粒粗大。分级固溶较单级固溶可更好的控制合金组织,如460℃×120min 480℃×60min与480℃×180min相比,再结晶和晶粒尺寸小得多,但初生AlZnMgCu相溶解程度相差不大。  相似文献   

18.
双重淬火对7055铝合金组织性能的影响   总被引:1,自引:0,他引:1  
通过拉伸性能测试、晶间腐蚀和剥落腐蚀性能测试,金相显微镜、透射电子显微镜研究了双重淬火对7055铝合金组织及性能的影响.结果表明:合适的双重淬火可调控晶界和晶内析出状态,使合金时效后晶界上的析出相呈断续分布,晶内沉淀强化相均匀、弥散、细小析出,保证合金高强度的同时,提高晶间和剥落腐蚀性能.  相似文献   

19.
基于两次挤压处理后的喷射成形7055铝合金,采用SEM、光学显微镜、硬度仪和拉伸试验机等分析手段研究了试验合金在不同时效工艺下的组织和性能。结果表明,相较于单级时效工艺,经过120 ℃×6 h+160 ℃×2 h双级时效处理后,析出相呈短棒状均匀分布于基体,其沿长度方向上的平均尺寸为500 nm,宽度方向平均尺寸为10 nm,时效峰值硬度达196.4 HV0.05。采用双级时效工艺处理的试验合金在298、398、498和598 K的抗拉强度分别为855、792、688和360 MPa,断后伸长率分别为14%、11%、9%和8%。采用该双级时效处理工艺处理的喷射成形7055铝合金应用于轮毂紧固件产品的制备,并对其进行硫酸阳极氧化处理,可使得紧固件试样同时兼具高强度、高硬度以及高耐蚀性能,有望得到更广泛的应用。  相似文献   

20.
7055超高强、超高韧铝合金力学性能分析   总被引:1,自引:0,他引:1  
用拉伸试验研究了经不同固溶和时效工艺处理后7055铝合金的力学性能,并结合显微组织进行了分析.结果表明,复合固溶(双级) 特殊时效处理新工艺比传统热处理工艺更合理,可使铝合金获得超高强、超高韧的有效结合.试验确定了最佳工艺,即强化固溶:455 ℃×(10~30)min 470 ℃×(20~40)min (480~500)℃×(10~30)min;特殊时效:135 ℃×16 h (190~210)℃/(10~20)min,铝合金新状态T78的σb=720 MPa、σ0.2=690 MPa、δ5=12%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号