首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
牛运峰  鲁道荣  燕逸飞 《表面技术》2011,40(3):79-81,97
采用正交实验法设计多种氨丙基甲基二乙氧基硅烷的水解工艺条件,在冷轧钢表面制备硅烷膜,通过对比每种条件所得硅烷膜样品在3.50%NaCl溶液中的塔菲尔极化曲线,获得了最佳水解工艺,并用稳态极化曲线和扫描电子显微镜,研究了该工艺制备的硅烷膜对冷轧钢耐蚀性能的影响.研究表明:硅烷、乙醇、去离子水的体积比2:10:88,水解温...  相似文献   

2.
采用正交试验法探讨了在冷轧钢表面制备复合纳米硅烷膜的最佳工艺条件,通过塔菲尔曲线研究了硅烷膜在3.50%NaCl溶液中的自腐蚀电流密度与自腐蚀电位。实验表明,形成复合纳米硅烷膜的最佳工艺条件为:水解温度为40℃、水解时间为8h、水解溶液的pH为10、水解溶液各组分的体积比为V(y-APS硅烷):V(乙醇):V(水)=7:22:75、浸涂时间20min、固化温度90℃、固化时间20min。纳米材料最佳用量为0.3g·L^-1。通过阳极极化曲线研究了存在与不存在纳米材料的硅烷膜的耐蚀性能,用扫描电子显微镜观察了在相同超电势下存在与不存在硅烷膜的冷轧钢在腐蚀前后的形貌变化。结果表明,复合纳米硅烷膜的耐蚀性能明显优于纯y-APS硅烷膜。  相似文献   

3.
金属表面制备KH-560硅烷膜涂层的工艺研究   总被引:12,自引:0,他引:12  
制备了有望取代磷化和铬酸盐钝化的KH-560硅烷膜,采用红外反射吸收光谱(RA-IR)分析KH-560硅烷膜的成分和结构、电导率法在线监测硅烷偶联剂水解程度,以涂层拉伸法测试膜的结合强度,研究了影响该硅烷膜性能的各种制备工艺条件。试验研究表明不同水解试剂、硅烷溶液的浓度、水解时间和老化温度及时间等对膜的性能都有着明显的影响,其中水解试剂(水 甲醇)、浓度10%左右、水解时间48h;老化成膜温度100~200℃、时间1h,所获硅烷膜性能较好。同时还说明,水解时间对膜性能的影响要大于浓度对膜性能的影响。  相似文献   

4.
将AZ91D压铸镁合金于室温下浸渍在KH-550/乙醇/去离子水=5/80/15(体积分数)的混合溶液(水解时间2 h,p H=7~10)中90 s,取出经120℃×60 min固化处理制备了硅烷膜试样。采用电导率在线测量法研究了p H值对KH-550水解的影响,通过点滴试验、中性盐雾试验和电化学阻抗谱评价了硅烷膜的耐蚀性能。结果表明,当p H=9时,KH-550溶液同时具有最优的水解程度和稳定性;随p H值的增加,硅烷膜试样的耐蚀性能先上升后下降,当p H=9时,硅烷膜的耐蚀性能最佳。  相似文献   

5.
镀锌钢板表面硅烷膜的制备及性能研究   总被引:4,自引:3,他引:1  
王华  李淑英 《表面技术》2016,45(10):168-172
目的提高镀锌钢板的耐腐蚀性能。方法在镀锌钢表面制备双-[γ-(三乙氧基硅)丙基]四硫化物(BTESPT)和乙烯基三乙氧基硅烷(VTES)单一硅烷膜和双硅烷膜,并掺杂缓蚀剂和稀土盐改性制备复合膜,用动电位极化曲线测试研究各种硅烷膜在3.5%Na Cl溶液中对镀锌钢的腐蚀防护性能。结果 VTES硅烷膜的最佳工艺条件为:V(VTES):V(乙醇):V(水)=7:30:70,p H=4.5,水解2 d,成膜时间20 min,固化温度100℃,固化时间30 min,VTES硅烷膜耐蚀性比BTESPT硅烷膜略差,但更经济。双层硅烷膜能够提高物理屏障作用,可以进一步增加耐蚀性。当铈盐和硅烷混合水解再成膜时,硅烷膜的耐蚀性最好。在硅烷水解溶液中加入0.01 mol/L的吡咯,可以制得耐蚀性优良的缓蚀剂掺杂硅烷摸。结论铈盐和吡咯改性硅烷膜对镀锌钢具有良好的保护作用。  相似文献   

6.
热镀锌钢表面铈盐与硅烷处理后的耐蚀性能   总被引:3,自引:0,他引:3  
将热镀锌(HDG)钢板经20g/L的Ce(NO3)3·6H2O溶液处理后浸涂5%(体积比)硅烷,研究膜层的耐蚀性能。5%NaCl溶液中的电化学极化曲线测试结果和中性盐雾试验(NSS)结果表明,单独的铈盐处理或浸涂硅烷膜都能够提高热镀锌层的耐蚀性,而经过该铈盐处理后再浸涂硅烷形成双层膜后能够明显地抑制腐蚀过程中的阴极和阳极反应,极化电阻Rp较HDG试样增加40多倍,也是单一膜层处理试样的5~9倍,膜层的耐蚀性能明显提高。俄歇电子谱(AES)分析表明,热镀锌试样经过两步处理后,在表面形成了双层膜,外层是富含C、Si、O的均匀硅烷膜层,里层是富含Ce的稀土转化膜层。  相似文献   

7.
目的提高5182铝合金表面耐蚀性能及其与漆膜的结合力。方法采用KH550硅烷试剂在5182铝合金表面制备硅烷涂层,同时探究不同浸泡时间、溶液pH值和固化温度对硅烷涂层结构和性能的影响,并优化硅烷涂层的制备工艺。采用扫描电子显微技术(SEM)、接触角试验仪和拉曼光谱研究硅烷涂层的结构和成分。采用电化学阻抗谱(EIS)技术评价涂层的耐蚀性能。采用涂层附着力自动划痕仪评价硅烷涂层对有机漆膜结合力的影响。结果浸泡时间180 s、溶液pH值11、固化温度90℃为5182铝合金表面硅烷涂层的最佳制备工艺,该工艺条件下制备的硅烷涂层均匀、致密地覆盖于铝合金基体表面,厚度约为100 nm。在Na_2B_4O_7×10H_2O和NaOH水溶液中,硅烷处理试样的低频阻抗值比未硅烷处理试样高约2个数量级,硅烷处理样品与漆膜的结合力明显优于未经过硅烷处理的试样。结论采用优化工艺制备的硅烷涂层能改善5182铝合金的耐蚀性能。当硅烷涂层作为中间层存在时,显著提高了有机涂层与合金基体的结合强度。  相似文献   

8.
采用分子自组装技术在碳钢表面制备了苯基三乙氧基硅烷自组装膜,利用单因素和正交实验找到最佳组装工艺条件。通过Tafel曲线研究了该工艺条件下自组装膜对碳钢在10%硫酸介质中的缓蚀性能。结果表明:水解55h后,温度为40℃、pH值为4.5、V_(苯基三乙氧基硅烷)∶V_(超纯水)∶V_(无水乙醇)=2∶5∶45时,溶液的电导率最大。该条件下自组装膜对碳钢有良好的缓蚀效率,随着组装时间的增加,对碳钢的缓蚀效率会更好。  相似文献   

9.
目的为进一步提升镁合金表面常规硅烷膜的耐蚀性能。方法在γ-氨丙基三乙氧基硅烷溶液中掺杂0.50 g/L硝酸铈,采用简单化学浸渍处理,在AZ91D镁合金基体表面制备了铈盐掺杂硅烷膜。借助扫描电子显微镜(SEM)观察了铈盐掺杂前后硅烷膜的表面微观形貌,通过开路电位-时间曲线、电化学交流阻抗谱(EIS)和中性盐雾试验(NSS)研究了铈盐掺杂对5%Na Cl溶液中硅烷膜耐蚀性能的影响。结果铈盐掺杂硅烷膜比普通硅烷膜更厚且平整,其致密性、均匀一致性较好,完全覆盖了镁合金基体,已看不到磨痕。铈盐掺杂硅烷膜的稳定电位约为-1.31 V,且需要的稳定时间最长。铈盐掺杂硅烷膜具有更大的低频阻抗数值,有效遏制了侵蚀性粒子向镁合金基体的迁移和扩散,避免了镁合金基体发生阳极溶解反应。结论采用向硅烷溶液中添加硝酸铈的方法,能够在AZ91D镁合金表面制备出铈盐掺杂硅烷膜。由于铈离子在某种程度上修复了硅烷膜层中的微裂纹和缺陷,显著提升了硅烷膜的耐蚀能力。  相似文献   

10.
采用浸涂技术,在热镀锌(HDG)钢板表面制备3-氨丙基甲基二乙氧基硅烷膜。通过电化学方法研究硅烷膜在3.50%的氯化钠溶液中的耐蚀性能,并用SEM研究存在硅烷膜的镀锌钢在腐蚀前后的形貌变化。结果表明,形成硅烷膜的镀锌钢在3.50%的氯化钠溶液中的自腐蚀电流密度下降到2.434×10^-8A·cm^-1自腐蚀电位正移。经SEM测试表明,硅烷膜在腐蚀前后的形貌几乎不变,耐蚀性能明显优于空白样镀锌钢。  相似文献   

11.
硅烷处理对 EW75 M 稀土镁合金阴极电泳涂层性能的影响   总被引:2,自引:2,他引:0  
目的探究硅烷处理对阴极电泳涂层的耐腐蚀性能及其与基体间结合力的影响。方法对稀土镁合金表面进行硅烷前处理,再沉积阴极电泳涂层,评价涂层的耐腐蚀性能、抗溶胀性能,分析涂层的腐蚀微观形貌、组织结构及界面结合。结果硅烷膜层具有一定的防护性能,能够减少阴极电泳涂层针孔、橘皮的出现,增强阴极电泳涂层的致密性。硅烷改性能够提高阴极电泳涂层与基体的结合力,硅烷预处理的电泳试样在NMP溶液中浸泡102 h,依然结合完好;而未经硅烷预处理的电泳试样浸泡7 min后,涂层就完全剥落。此外,硅烷处理能够极大地改善阴极电泳涂层的阻抗性能,使涂层在3.5%(质量分数)NaCl溶液中浸泡227 h的极化电阻Rp仍在108数量级以上。结论硅烷阴极电泳复合涂层具有良好的耐蚀性能和抗溶胀性能,值得推广应用。  相似文献   

12.
目的研制一种新型硅烷复合物,以替代传统的铬酸盐钝化液对铝材进行表面处理。方法将KH-560和A-151两种偶联剂进行复合,并添加合成的水性聚酯水解促进剂和带有活性基团的交联剂R,考察偶联剂配比、水解促进剂和交联剂R的用量对处理液稳定性及硅烷膜耐腐蚀性的影响。结果当KH-560与A-151的质量比为4∶1,水解促进剂的质量分数为0.4%~0.6%时,处理液的储存时间超过90天,硅烷膜也具有良好的耐腐蚀性能。对于储存后性能下降的处理液,添加4%(占处理液质量的百分比)的交联剂R后,即能在硅羟基之间形成明显的交联作用,有效增强硅烷膜的防护性能。结论该硅烷复合物的综合性能达到了工业化应用要求,可解决铬酸盐钝化液对环境的污染问题,具有良好的社会效益。  相似文献   

13.
目的为了提高钢材表面的耐腐蚀性能。方法采用含正硅酸乙酯(TEOS)的硅烷液,在40Cr合金钢表面制备TEOS改进硅烷保护膜,并采用正交试验法优选出了最佳TEOS改进硅烷液的工艺参数。采用扫描电子显微镜(SEM)、中性盐雾实验失重法、电化学阻抗法和极化法对其成膜性能和耐腐蚀性进行测试。结果 TEOS改进硅烷膜的耐硫酸铜腐蚀时间相对于硅烷膜提高了近50%。电化学极化测试可以看到TEOS改进硅烷膜的腐蚀电位正移,腐蚀电流密度大幅度下降至1.883×10-6 A/cm2。电化学阻抗谱测试中,在阻抗-频率Bode图中低频区,杂化硅烷膜试样的阻抗值大于硅烷膜试样的阻抗值,表现出良好的抗腐蚀性能;相角-频率Bode图显示TEOS改进硅烷膜在中高频区出现一个宽大的平台区,而且在中高频区相位角度数大于硅烷膜的相位角度数,表现出良好的容抗性能,表明TEOS改进硅烷膜能大幅度提高40Cr的耐腐蚀性。结论所制备的TEOS改进硅烷保护膜具有较好的成膜性,该硅烷膜坚实致密,且所形成的膜结构具有较好的耐腐蚀性能。  相似文献   

14.
目的为了提高钢铁表面氧化锆转化膜的耐蚀性。方法以Q235钢片为研究对象,在基础成膜液中分别添加不同质量浓度的三乙醇胺及三乙醇胺与尿素复配物,制备氧化锆转化膜。通过Tafel极化曲线和交流阻抗探讨氧化锆转化膜在5%NaCl腐蚀液中的电化学行为,利用扫描电镜观察氧化锆转化膜的表面形貌,在氧化锆转化膜上涂不同底漆,采用划圈法测试漆膜的附着力。结果在氧化锆基础成膜液中添加100 mg/L三乙醇胺所制得的氧化锆转化膜在5%NaCl腐蚀液中的自腐蚀电流密度为1.66×10-5 A/dm~2,钝化区域最宽,阻抗最大,耐蚀性最好。用尿素代替50%三乙醇胺,其所制得的氧化锆转化膜在5%NaCl腐蚀液中的自腐蚀电位和自腐蚀电流密度变化不大,钝化区域略有加宽,但阻抗弧明显加大。在氧化锆基础成膜液中添加三乙醇胺及三乙醇胺与尿素复配物制得的氧化锆转化膜,分别经过2%硅醇封闭液和5%硅烷封闭液封闭处理后,与低表面处理环氧底漆和改性环氧底漆漆膜附着力为1级。结论在基础成膜液中添加三乙醇胺和三乙醇胺与尿素复配物后可提高Q235钢耐蚀性,氧化锆转化膜分别经过2%硅醇封闭液和5%硅烷封闭液封闭处理后,均与低表面处理环氧底漆和改性环氧底漆保持良好的附着力。  相似文献   

15.
硅烷处理对镁合金具有良好的保护性。为了抑制 Mg-7Gd-5Y-Nd-Zr (EW75) 稀土镁合金和 Ti-6Al-4V (TC4) 钛合金的电偶腐蚀作用,以自腐蚀镁合金为对照组,对硅烷改性和未改性的镁合金与TC4钛合金的电偶腐蚀进行了研究。用数码照片和扫描电镜 (SEM) 观察分析了浸泡 48 h 后的镁合金表面形貌,样品的自腐蚀电流密度和电偶腐蚀电流密度分别用极化曲线和电偶腐蚀测量来表征获得。结果表明,硅烷膜可以减少失重比,使腐蚀形式由点腐蚀变为均匀腐蚀,因此硅烷改性的镁合金比未改性的镁合金具有更好的抗电偶腐蚀能力,其原因是硅烷膜可以提高镁合金的电位,并减小电偶腐蚀电流密度  相似文献   

16.
铝合金低乙醇含量硅烷化处理技术的研究   总被引:1,自引:0,他引:1  
目的对硅烷偶联剂KH-550硅烷化改性铝合金的工艺进行优化,在不影响膜层性能的前提下,创新性降低乙醇含量,以满足工业化生产中安全、低成本的需求。方法采用单因素变量法,研究硅烷溶液中硅烷和乙醇的浓度、固化温度及固化时间等因素对硅烷膜耐蚀性的影响,由此确定最佳配方工艺,并分析硅烷膜的表面形貌、成分及疏水性。结果采用硅烷、去离子水、乙醇体积比为5∶55∶40的硅烷溶液,涂膜后,在180℃下加热40 min,能得到较完整均匀、耐蚀性较好的硅烷膜,膜层由C,O,Si等元素组成。硅烷浓度对硅烷膜的耐蚀性及表面接触角影响较大,在最佳工艺下获得的硅烷膜表面接触角可达70.2°。结论硅烷膜对铝合金基体具有一定的屏障作用,保护基体免受腐蚀。  相似文献   

17.
铝合金表面BTSE硅烷化处理研究   总被引:26,自引:0,他引:26  
胡吉明  刘倞  张金涛  张鉴清  曹楚南 《金属学报》2004,40(11):1189-1194
通过极化曲线与电化学阻抗谱(EIS)等技术对LY12铝合金表面形成的BTSE硅烷膜在NaCl溶液中的性能进行了研究.结果表明,硅烷膜的存在,一方面很大程度上增大了铝合金的耐蚀性,另一方面并不影响合金电极在腐蚀介质中的电极动力学.这意味着BTSE膜对侵蚀粒子仅起到阻挡层的作用.提出了硅烷化试样在测试溶液中的合理等效电路,并对EIS数据进行了拟合.采用正交设计方法对硅烷化工艺参数进行了优化,其中采用电极体系的极化电阻(由EIS拟合得出)来量化硅烷膜的耐蚀性.文中还对各因素对膜性能的影响规律进行了初步探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号