首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
研究了终冷温度和等温时间对中低碳纳米贝氏体钢显微组织演变的影响。结果表明,实验钢采用缓冷至低于Ms0温度后等温工艺,可获得纳米贝氏体钢。随着终冷温度降低,贝氏体增多,残留奥氏体的含量先升高后降低,300℃终冷,组织中未转变奥氏体大量转变为贝氏体,残留奥氏体减少,贝氏体板条最细,可达200~300 nm;300℃等温,随着等温时间增加,碳含量不同的未转变奥氏体,在低于实验钢Ms0温度高于未转变奥氏体Ms'温度时,相继发生贝氏体转变,组织中贝氏体的含量不断升高,等温5 h后,贝氏体含量高于75%。  相似文献   

2.
对不同Mn含量(0、1.8、2.3和3.2wt%)的无碳化物贝氏体钢进行(Ms+10)℃等温转变和(Ms+10)~(Ms-20)℃连续冷却转变热处理,利用金相、XRD、TEM和EBSD等技术研究了Mn含量对钢组织性能的影响。结果表明:无Mn钢在Ms温度附近转变所得组织为贝氏体铁素体、残留奥氏体和仿晶界型铁素体混合组织,含Mn钢在Ms温度附近转变所得组织为下贝氏体,由板条状的贝氏体铁素体和片状的残留奥氏体组成,随Mn含量的提高,组织中残留奥氏体体积分数变化较小,贝氏体组织强度提高,塑性降低。Mn含量为2.3%时,综合性能最佳。  相似文献   

3.
研究了3种碳含量(0.22C、0.34C、0.45C)的贝氏体钢在960℃奥氏体化+Ms点以上10~50℃等温淬火工艺下碳含量对贝氏体组织转变和力学性能的影响。结果表明,3种试验钢经过等温淬火处理后均获得由贝氏体铁素体和残留奥氏体相间分布组成的无碳化物贝氏体组织;随着碳含量的降低,贝氏体相变时间显著缩短,贝氏体铁素体板条变厚,硬度和抗拉强度呈下降趋势,但冲击性能显著提高,这主要是与低碳钢贝氏体转变温度更高,贝氏体铁素体板条粗大但高碳含量的大块状残留奥氏体减少有关。  相似文献   

4.
等温淬火温度对含铌TRIP钢组织和力学性能的影响   总被引:1,自引:0,他引:1  
利用金相显微镜、X射线衍射等方法研究了0.15C-1.46Si-1.56Mn-0.06Nb冷轧TRIP钢板等温淬火温度对组织和力学性能的影响。结果表明,试验钢最佳的临界热处理工艺:在840℃两相区保温180 s,再快速冷却到420℃并在该温度保温240 s,进行贝氏体等温转变处理。采用这种热处理工艺,试验钢的微观组织为铁素体+贝氏体+残留奥氏体,其中铁素体占72%,贝氏体占20%,残留奥氏体占8%,可获得较佳的相变诱发塑性和较好的强韧性配合,其强塑积可达到2.5×104MPa.%,提高或降低贝氏体等温淬火温度都会降低强塑积。结果还表明,在840℃,适当的延长热处理时间可以提高残留奥氏体体积分数及残留奥氏体的碳含量,有助于提高材料的强塑积。  相似文献   

5.
熊杰  黄健  史文  李麟 《上海金属》2013,(2):7-11
采用扫描电镜(SEM)、X射线衍射仪、膨胀仪和MTS拉伸试验机等实验手段研究了热处理工艺对含V高强度TRIP钢组织和力学性能的影响。结果表明,该TRIP钢热处理后组织细小,细晶强化对机械性能的提高起到了一定作用。两相区退火温度越高,组织中铁素体含量越少,且贝氏体转变速率越快。随着贝氏体等温时间延长,组织中贝氏体量增多,马氏体量减少,残余奥氏体量及其碳含量呈现先增大后减小或趋于平稳的趋势。试验钢经800℃×3 min+400℃×3 min工艺处理后,可获得最大残余奥氏体量,体积分数达到20.6%,其碳含量为1.19 wt%,该工艺下试验钢可获得最佳力学性能,抗拉强度高达1 052 MPa,延伸率24%,强塑积达到25 248 MPa%。  相似文献   

6.
采用两相区保温-淬火-贝氏体区等温-淬火(IQPB)热处理工艺,通过SEM、TEM、XRD、EPMA、室温拉伸等手段,研究了两相区等温时间对低碳贝氏体/铁素体复相钢组织组成、合金元素分布、残留奥氏体形貌、含量及力学性能的影响。结果表明:随两相区等温时间的增加,铁素体逐渐增加,贝氏体逐渐减少;抗拉强度由1116 MPa降低至971 MPa,断后伸长率和残留奥氏体含量呈先升高后降低的趋势,残留奥氏体中的碳含量逐渐增加。由于在拉伸过程中,残留奥氏体发生TRIP效应转变为马氏体,试验钢的强度和塑性得到双重提高。经两相区等温15 min时,强塑积达29 925 MPa·%。  相似文献   

7.
采用双相区保温-淬火(IQ)、淬火-配分-贝氏体区等温(QPB)和双相区保温-淬火-配分-贝氏体区等温(IQPB)热处理工艺,研究C、Mn元素对残留奥氏体热稳定和机械稳定性的影响。通过扫描电镜(SEM)、透射电镜(TEM)、X射线衍射仪(XRD)和电子探针(EPMA)对试验钢的组织形貌、残留奥氏体含量及合金元素分布进行表征。结果表明,试验钢在双相区保温过程中C、Mn元素由铁素体向奥氏体扩散,在奥氏体发生富集,使奥氏体的热稳定性增强;在形变过程中由于C、Mn元素的稳定作用使残留奥氏体的机械稳定性提高。试验钢经IQPB工艺处理后,抗拉强度为1098 MPa,伸长率达20%,其强塑积达21 960 MPa·%,与QPB工艺相比,强塑积提高了6840 MPa·%。  相似文献   

8.
分别在Cr5钢等温贝氏体转变阶段施加0.5、1、1.5 T脉冲磁场,并与相同工艺下的正常等温贝氏体转变比较,研究不同强度脉冲磁场对Cr5钢等温贝氏体转变组织与性能的影响。结果表明,与正常等温贝氏体转变相比较,在Cr5钢等温贝氏体转变阶段施加脉冲磁场,随着磁场强度的提高,试样贝氏体转变量增多,残留奥氏体含量减少,抗压强度、压缩率和硬度降低。  相似文献   

9.
超高强TRIP钢的热处理工艺对组织与力学性能的影响   总被引:4,自引:0,他引:4  
研究了抗拉强度超过1000MPa的冷轧TRIP钢的热处理工艺对组织和力学性能的影响,并对其工艺进行了优化。结果表明,超高强TRIP钢在两相区的加热温度升高到820~840℃时,钢的抗拉强度下降而伸长率增加;贝氏体等温温度偏低(380℃)或者偏高(440℃)时,钢的伸长率较低。两相区加热温度对铁素体量的影响不大,降低贝氏体等温温度和延长等温时间都能增加贝氏体量。当贝氏体量高于38%时再增加贝氏体量来提高TRIP钢的强度效果不明显,可通过提高残留奥氏体量及其碳含量来提高力学性能。试验钢优化的热处理工艺:820℃×90s+420℃×240s;优化的组织含量配比:53%铁素体+36%贝氏体+11%奥氏体;优化的力学性能组合:抗拉强度1140MPa和伸长率22%。  相似文献   

10.
对一种中碳贝氏体钢进行900℃保温1h奥氏体化处理,分别在200、250、300℃进行不同时间的等温处理,测定维氏硬度,观察金相组织,并对其微观结构进行透射电镜分析,研究了试验钢的热处理工艺、硬度和微观结构的相关性。结果表明:试验钢等温处理后的室温组织由贝氏体、马氏体和残余奥氏体组成;随保温时间延长,马氏体含量逐渐减少,贝氏体含量逐渐增多,并趋于稳定,相应地,试样硬度逐渐降低,趋于平缓;贝氏体亚结构由纳米级板条状贝氏体铁素体及板条间残留奥氏体构成,没有碳化物析出。  相似文献   

11.
In many cases an isothermal treatment of throughhardenlng beating grades in the lower bainitic range allows to adjust the mechanical properties of machine components to the later application, similar to those of martensitic hardening.The achieved microstructure contains only a negligible amount of retained austenite, so a dimensional change of components during application can be reduced. One disadvantage of the isothermal bainitic treatment in salt bath is that the duration of the treatment is much longer than that of the martensitic hardening and this causes higher costs. Therefore it would be desirable to be able to shorten the transformation duration in the lower bainitic range. The aim of the present work is to determine the parameters, by which the process could be greatly shortened in comparison with the conventional transformation process in the lower bainitic range. Therefore the bainitic transformation behavior of the steel 100 Cr6 (SAE 52100) and the relevant influence factors were investigated by means of dilatometry, in which the heat treatments were carried out with different process variants including pre-quenching or post-quenching. The amount of retained austenite in the microstructure and the hardness of the steel after the shortened heat treatments were measured. Finally the possibility to use these processes in industrial production is discussed.  相似文献   

12.
何涛 《轧钢》2022,39(5):27-33
为明确超级贝氏体组织失稳机制以及探索提高超级贝氏体钢中残余奥氏体热稳定性的方法,通过预相变马氏体工艺,即在等温贝氏体相变前引入预相变马氏体,制备了中碳超级贝氏体钢。对比分析了回火前后中碳超级贝氏体钢显微组织和力学性能的变化,研究了预相变马氏体对中碳超级贝氏体钢中贝氏体组织及残余奥氏体热稳定性的影响。结果表明:预相变马氏体的存在能够细化贝氏体铁素体板条,提高残余奥氏体含量和热稳定性。预相变马氏体的引入及其对超级贝氏体组织的细化作用使得试验钢的屈服强度超过1 000 MPa,伸长率大于20%;300~600 ℃回火1 h后,高碳薄膜状残余奥氏体首先发生分解,形成细小的碳化物,然后贝氏体铁素体板条发生回复和再结晶,形成沿原板条方向的铁素体晶粒;600 ℃回火后试验钢的屈服强度仍与回火前相当,主要是预相变马氏体周围的薄膜状残余奥氏体未发生明显分解,能够抑制相邻贝氏体铁素体板条的回复。  相似文献   

13.
研究了锻造变形量与热处理工艺对一种新型耐磨钢显微组织、硬度和耐磨性的影响,并用彩色金相法定量分析了钢中马氏体+残留奥氏体含量。结果表明:不同变形量下耐磨钢组织均为贝马复合相,贝氏体板条厚度由30%变形量的524 nm降低到70%变形量的292 nm,马氏体+残留奥氏体体积分数由25.4%增加至41.1%;与直接进行260 ℃等温转变时相比,先在Ms点以上的330 ℃保温5 min,再进行260 ℃等温转变时的贝氏体板条厚度减少了357.2 nm,磨损量降低了0.02 g,且平均摩擦因数由0.311降至0.212。  相似文献   

14.
In this work, we modify existing models to simulate the kinetics of bainitic transformation during the bainitic isothermal transformation (BIT) stage of a typical two-stage heat treatment – BIT is preceded by an intercritical annealing treatment – for TRIP steels. This effort is motivated by experiments performed in a conventional TRIP steel alloy (Fe–0.32C–1.42Mn–1.56Si) that suggest that thermodynamics alone are not sufficient to predict the amount of retained austenite after BIT. The model implemented in this work considers the non-homogeneous distribution of carbon – resulting from finite carbon diffusion rates – within the retained austenite during bainitic transformation. This non-homogeneous distribution is responsible for average austenite carbon enrichments beyond the so-called T0 line, the temperature at which the chemical driving force for the bainitic transformation is exhausted. In order to attain good agreement with experiments, the existence of carbon-rich austenite films adjacent to bainitic ferrite plates is posited. The presence of this austenite film is motivated by earlier experimental work published by other groups in the past decade. The model is compared with experimental results and good qualitative agreement is found.  相似文献   

15.
基于CALPHAD方法建立了Q&P钢的配分扩散模型,并建立了一套特定成分在特定QP工艺下的组织转变计算任务流,通过计算QP钢一次淬火过程的马氏体/残留奥氏体含量和配分过程中残留奥氏体的碳富集量,并结合Thermo-Calc软件内置的基于吉布斯自由能的马氏体相变本构模型,预测稳定保留至室温的残留奥氏体含量。利用该模型计算文献钢种(Fe-0.2C-1.28Mn-0.37Si-0.0018B, wt%)的室温残留奥氏体含量,结果显示计算马氏体转变温度比试验数据高60 ℃,计算室温残留奥氏体含量为4.41%,与试验数据基本吻合,从而验证了该计算模型的半定量性。利用该模型进一步计算分析了碳、锰元素含量和热处理制度对AQT980和AQT1180钢一次残留奥氏体含量的影响规律,计算结果显示碳、锰元素含量的增加可使钢中相变点(A3、Ms、Mf)温度下降;在固定淬火温度下,钢中的碳含量和锰含量增加可使一次残留奥氏体含量大幅增加;当碳、锰元素含量一定时,一次淬火温度的上升会使一次残奥含量大幅增加。  相似文献   

16.
The effects of isothermal treatment on the microstructure and hardness of commercial super-bainitic steel were investigated. A series of isothermal treatments were carried out at temperatures of 210-250 °C for different time periods. The results indicate that the bainitic reaction and hardness were very sensitive to the isothermal transformation temperature. The fine super-bainitic microstructure, containing the carbide-free bainitic ferrite lath and the carbon-enriched retained austenite film, can be produced by heating to 210 °C for 30 h, resulting in a hardness of 662 HV. By increasing the isothermal transformation temperature, the bainitic transformation kinetic is accelerated; however, this is at the expense of coarsening bainitic ferrite laths and decreasing the bainitic ferrite quantity. The relationship between hardness and microstructures obtained under different isothermal treatments, which is correlated with the carbon concentration, dislocation density, bainitic amount and super-bainite size, is discussed in detail.  相似文献   

17.
The mechanical properties, microstructure and retained austenite stability of CMnAlSi-TRIP steels were investigated in this paper. The steel sheets were hot-rolled, cold-rolled and heat treated by intercritical annealing and isothermal heat treatment. The microstructure, volume fraction of retained austenite and its carbon concentration were observed by Optical microscopy and X-ray diffraction. The mechanical properties were obtained through uniaxial tensile test. The results show that the CMnAlSi cold-rolled TRIP-aided steels have good combination of strength and ductility with proper isothermal heat treatment, the retained austenite stability determines incremental strain hardening exponent during strain-induced martensitic transformation, and affected by its volume fraction and carbon content. The retained austenite stability has a good correlation with the combination of strength and ductility.  相似文献   

18.
Austempered ductile iron (ADI) exhibits a favourable combination of strength and toughness, and has been used as a substitute for quench-tempered or carburise-quenched steel. A characteristic feature of bainite transformation of cast iron, as opposed to carbon steel, is that precipitation of carbide is suppressed by the high concentration of silicon. Thus, a favourable structure, consisting of bainitic ferrite and retained austenite without carbide, can be provided by the optimum austempering treatment. Such microstructure and the mechanical properties of the iron are significantly affected by the conditions of the austempering treatment and the chemical composition. In this study, several grades of ductile iron were austempered under various conditions. The relationship between the impact strength, the quantity of retained austenite and the isothermal transformation curve was investigated. The stability of the retained austenite is considered important, because ADI contains a large amount of retained austenite which contributes to the improvement of ductility and toughness and which may transform to martensite when held at low temperature or subjected to stress. In this study, the stability of the retained austenite at low temperatures was examined by holding or stressing to establish the relations between transformation and temperature, stress and strain.

When the austempering time is short, the untransformed austenite partially transforms to martensite during air cooling, due to the lower carbon content, resulting in lower impact strength. As the austempering time increases, the untransformed austenite is stabilised by carbon-enrichment and there is little transformation to martensite, resulting in a large amount of retained austenite and higher impact strength. When the austempering time becomes much longer, the carbon-enriched austenite decomposes, presumably to bainitic ferrite and carbide, decreasing impact strength. In increasing the silicon content, precipitation of carbide in bainite is suppressed and both the maximum impact value and the content of retained austenite increase. The decreasing rates after the maxima through an additional isothermal holding becomes smaller.

By holding at temperatures down to –40°C, the decrease in retained austenite and the increase in hardness are both small. The retained austenite is stable under stress lower than that required to cause plastic deformation. Compressive stress hinders the martensitic transformation, because the transformation is accompanied by volume expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号