首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 147 毫秒
1.
本文通过常规轧制与退火工艺制备了具有高抗拉强度(~502MPa)和高断后延伸率(~22%)的高镁低钪Al-Mg-Sc-Zr合金,退火工艺为673K/1h。通过X射线衍射仪(XRD)、电子背散射衍射仪(EBSD)和透射电子显微镜(TEM)等手段,研究了合金退火后的组织及其强化机制。结果表明:Al-Mg-Sc-Zr合金在退火后获得了具有尺寸为0.42 μm的小晶粒和尺寸为16.2μm的大晶粒的双峰晶粒组织,固溶镁原子与Al3(Sc,Zr)相的存在与共同作用促进了具有较大晶格畸变、存在大量亚晶及均匀弥散分布析出相的双峰晶粒组织的形成;合金主要强化方式为镁原子的固溶强化、亚晶界阻碍位错引起的亚晶界强化、细晶强化和Al3(Sc,Zr)相的弥散强化,且合金计算与实测屈服强度相吻合;高镁固溶度、Al3(Sc,Zr)相、双峰晶粒及再结晶织构的存在为位错增殖提供了空间,提高了合金加工硬化率,进而提高了合金的延伸率。  相似文献   

2.
本文研究了Cu-20wt%Sc中间合金在液态Al-0.12wt%Zr合金中的溶解行为。发现随着保温温度提高和保温时间延长,含Sc质点的尺寸减小,面积分数降低,Al3Zr相质点尺寸也减小,面积分数也降低。凝固后在α Al基体中的Sc、Cu和Zr的固溶量随保温时间延长和保温温度提高都增加。保温一定时间后,部分溶解到溶体中的Sc原子被吸附到Al3Zr相表面,形成中间为Al3Zr相表面富Sc的结构。Sc和Zr联合加入后,合金凝固组织细小,随着保温温度提高和保温时间延长,合金凝固组织的晶粒尺寸略有增大。大量表面富Sc的Al3Zr质点为合金凝固提供了大量的异质形核核心,细化了合金组织。添加Cu-Sc中间合金的Al-Zr合金,均匀化退火后,同添加Al-Sc-Zr中间合金一样,也析出大量“芯壳”结构的Al3(Sc,Zr)相。  相似文献   

3.
采用热压缩试验和电子显微分析方法研究Al-6.00Mg、Al-6.00Mg-0.10Zr和Al-6.00Mg-0.25Sc-0.10Zr (质量分数,%)合金的变形行为和显微组织特征。结果表明,在最大加工效率条件(673 K,0.01 s-1)下变形时,Al-6.00Mg、Al-6.00Mg-0.10Zr和Al-6.00Mg-0.25Sc-0.10Zr合金的位错密度分别为2.68×1016、8.93×1016和6.1×1017 m-2;其动态再结晶分数分别为19.8%、15.0%和12.7%。中心点平均取向差(KAM)分析表明,通过添加Zr或Sc+Zr,Al-Mg合金晶界附近的位错密度增加。此外,基于动态材料模型(DMM)建立的热加工图表明,添加Zr或Sc+Zr能减小Al-Mg合金的低温不稳定域的范围,但会增大高温和高应变不稳定域的范围。实验结果进一步证明,在变形条件下,仅Al-6.00Mg-0.25Sc-0.10Zr合金在773 K和1 s-1时开裂。  相似文献   

4.
采用SEM、EBSD、EDS等测试方法对不同热处理温度下Mg-8.07Al-0.53Zn-1.36Nd镁合金微观组织及织构进行表征。结果表明:热处理后的合金主要由α-Mg基体、β-Mg17Al12沉淀以及含Nd化合物组成。400℃以下热处理后的合金中存在β-Mg17Al12沉淀析出区域和无析出区域双峰组织,主要沿变形带和孪晶界面析出的大量纳米级颗粒状β-Mg17Al12沉淀先于α-Mg基体静态再结晶的形成。升高退火温度,β-Mg17Al12数量变少,稀土相尺寸数量未有明显变化,双峰组织中的β-Mg17Al12沉淀无析出区域优先发生静态再结晶,这表明沉淀颗粒能够延缓静态再结晶。400℃热处理后的合金中β-Mg17Al12沉淀溶解、数量显著减少,镁基体发生完全再结晶且再结晶晶粒明显长大。EBSD结果显示,热处理后的实验合金织构主要以弱化的基面织构为主,并伴有部分非基面织构,400℃以下热处理的合金中,数量较多的β-Mg17Al12沉淀对弱化基面织构具有重要作用。随着热处理温度的升高,合金中位错密度下降,主要织构组分由{0001}<10-10>形变织构向{0001}<11-20>再结晶织构转变。  相似文献   

5.
研究了冷轧减薄率为75%的Al-10% Mg(质量分数)合金在75~150 ℃下退火的显微组织特点和力学行为。轧制态和退火态Al-10% Mg合金的特征是晶粒细长,位错密度高,Al3Mg2相含量极低,且无弥散分布的Al3Mg2相。随着退火温度的升高,细长晶粒的宽度增加,位错密度减小。在75~150 ℃退火后,相比于轧制态合金,其屈服强度降低8%~33%,极限抗拉伸强度降低1%~12%,延伸率增加16%~83%。此外,分析了各种强化机制对屈服强度的贡献,以及原有位错和Mg溶质对塑性的贡献。  相似文献   

6.
采用自蔓延燃烧反应法制备了一种新型Al-5Ti-0.8C中间合金,在此基础上采用不同含量(0%,0.1%,0.3%,0.5%,质量分数,下同)的中间合金对Al-Cu-Mn合金进行变质处理,研究该中间合金及其含量对Al-Cu-Mn合金组织形貌和高温力学性能的影响。结果表明:新型Al-5Ti-0.8C中间合金能够显著细化Al-Cu-Mn合金的晶粒尺寸,提高合金热处理过程中θ′(Al2Cu)相的析出密度,且细化析出相尺寸。其次,变质处理后合金的高温抗拉伸强度显著提高,且随着温度升高,抗拉伸强度的下降程度减小,主要原因在于变质处理后合金中析出均匀分布的细小θ′(Al2Cu)相以及热稳定性高的Al3(Ti,Zr)纳米颗粒。此外,当Al-5Ti-0.8C中间合金含量为0.3%时,Al-Cu-Mn合金的组织形貌和高温力学性能最优。  相似文献   

7.
采用拉伸测试,结合XRD、TEM、SEM和EBSD等物相和微观结构表征,研究了单独添加Cr、Mn、Zr、Ti对Al-Zn-Mg-Cu-Yb合金第二相(特别是AlCuYb相)析出、基体再结晶行为和拉伸沿晶断裂的影响。研究结果表明:在同时添加Yb和Cu的铝合金中,微米级、粗大AlCuYb相的析出难以避免。但有趣的是,进一步添加Mn的合金中,由于析出了亚微米的Al20Cu2Mn3相,可有效减少粗大AlCuYb相,在四种合金中形成的粗大相的数量最少。Al-Zn-Mg-Cu-Yb合金中添加Zr,可析出纳米级 Al3(Yb, Zr)弥散相,有效抑制结晶,但是AlCuYb相的形成消耗Yb元素,降低了二次共格Al3(Yb, Zr)弥散相的析出,此外粗大AlCuYb相颗粒诱发局部再结晶,一定程度降低了合金的强度。T6态 Al-Zn-Mg-Cu-Yb-Zr和Al-Zn-Mg-Cu-Yb-Mn合金经固溶后仍保持未再结晶纤维状结构,小角度再结晶分数高达50%以上,平均晶粒尺寸降至2~7 μm。相比之下,添加Cr或Ti的Al-Zn-Mg-Cu-Yb合金形成的均匀的再结晶晶粒,大角度再结晶分数高达80%,平均晶粒尺寸为40-96 μm。断裂时,尺寸1~3 μm的初生Al2CuMg相(而非粗大AlCuYb相)优先诱发断裂,裂纹沿析出相连续、粗大且无沉淀析出相宽化的大角度再结晶晶界或原始晶界扩展。  相似文献   

8.
用真空电弧炉在水冷铜模亚快速凝固条件下制备Ni-(50-x)Al-xSc(at%)合金,用光学显微镜(OM)和扫描电子显微镜(SEM)观察合金组织,用X射线衍射(XRD)和能谱(EDS)分析合金的相组成,结合差式扫描量热法(DSC)分析合金凝固过程,用维氏显微硬度计和纳米压痕仪分别测定合金的硬度和弹性模量,采用两相系统简化模型估算合金整体弹性模量。结果表明,Ni-50Al、Ni-45Al-5Sc、Ni-40Al-10Sc和Ni-35Al-15Sc合金的亚快速凝固组织分别为NiAl、NiAl+AlNi2Sc、NiAl+AlNi2Sc和NiAl+AlNi2Sc+(AlNi2Sc+Ni-16.93Al-21.53Sc)。合金中各相析出的先后顺序为NiAl、AlNi2Sc和(AlNi2Sc+Ni-16.93Al-21.53Sc)。AlNi2Sc生长的Jackson因子α = 0.2,凝固界面是粗糙界面。Sc使初生NiAl相的硬度提升,AlNi2Sc相的硬度大于NiAl相的硬度。Sc使初生NiAl相弹性模量减小,Ni-(50-x)Al-xSc合金的整体弹性模量与NiAl金属间化合物相比有减小。  相似文献   

9.
利用Gleeble--1500热模拟机、金相以及透射电镜对Cu--0.23%Al2O3(体积分数)合金高温塑性变形过程中的流变应力和显微组织变化规律进行了研究. 研究结果表明, Cu--0.23%Al2O3合金在热压缩过程中,热压缩条件不同流变应力变化规律会有所差异. 此外, 还求得了该合金高温变形的平均激活能和其他相关材料常数, 据此建立了峰值屈服应力--应变速率--温度之间的本构方程. 随热压缩温度的升高, 基体内动态再结晶晶粒尺寸和数量不断增加, 而在同一温度压缩时, 随应变速率的增加,组织分布不均匀性有所增加, 亚晶尺寸不断减小, 位错密度先增加后降低.  相似文献   

10.
利用高分辨透射电子显微镜和电子衍射观察了Al-12Zn-2.4Mg-1.1Cu-0.5Ni-0.2Zr合金中的Al3Zr-η′核壳颗粒。结果发现:Al3Zr颗粒在合金基体中以两种形态存在,一种是与基体共格的单独存在的Al3Zr颗粒;另外一种是作为η′析出相形核位置的核心Al3Zr颗粒,形成了一种与基体半共格的Al3Zr-η′核壳颗粒。该核壳颗粒的壳层由四种η′析出相变体组成。核心Al3Zr颗粒内部的晶格变形低于单独存在的Al3Zr颗粒,η′析出相和基体界面处存在显著的晶格应变。  相似文献   

11.
The effects of trace Sc, Zr, and Ti on the microstructure and hardness of Al alloys with high Mg content (Al-6Mg, Al-8Mg, and Al-10Mg) were studied by optical microscope, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Brinell hardness. The grain size of the as-cast alloys was refined by the addition of Sc and Zr, and it was further refined by the addition of Ti. With the same contents of Sc, Zr, and Ti, an increase in Mg content was beneficial to the refinement due to the solution of Mg into α-Al. The refined microstructures of the as-cast alloys were favorable for Brinell hardness. Addition of Sc, Zr, and Ti to the Al-10Mg alloy results in the improvement of peak hardness and it is about 45% higher than that of the Al-10Mg alloy, which is due to fine precipitations of Al3(Sc1−x Zr x ), Al3(Sc1−x Ti x ), and Al3(Sc1−xy Zr x Ti y ).  相似文献   

12.
The effects of minor contents of Zr and Sc on the microstructures and mechanical properties of Al–Mg–Si–Cu–Cr–V alloy were studied. The results show that the effects of minor Zr and Sc on the as-cast grain refinement in the ingots, the improvement in the strength of the as-extruded alloys and the restriction of high angle grain boundaries in the aged alloys can be sorted as Al3Sc>Al3(Zr,Sc)>Al3Zr. None of them could stop the nucleation of recrystallization, but Al3(Zr,Sc) phase is a more effective inhibitor of dislocation movement compared to Al3Sc in the aged alloys. Compared with the mechanical properties of the aged alloy added only 0.15% Sc, the joint addition of Zr and Sc to the alloy leads to a very slight decrease in strength with even no cost of ductility. Taking both the production cost and the little bad influence on mechanical properties into consideration, an optimal content of Zr and Sc in the Al–Mg–Si–Cu–Cr–V alloy to substitute 0.15% Sc is 0.13% Zr+0.03% Sc.  相似文献   

13.
The effects of the processes of severe plastic deformation (SPD), recrystallization, and precipitation of the β phase in multicomponent alloys of the Al-5Mg-Mn-Cr and Al-(4–5%)Mg-Mn-Zn-Sc systems on the mechanisms of grain-boundary relaxation and dislocation-induced microplasticity have been studied in some detail. To stabilize the ultrafine-grained structure and prevent grain growth, dispersed Al-transition-metal particles, such as Al3Zr, Al6Mn, Al7Cr, Al6(Mn,Cr), Al18Cr2Mg3 have been used. We have special interest in alloys with additions of scandium, which forms compounds of the Al3Sc type and favors the precipitation of finer particles compared to the aluminides of other transition metals. After SPD, Al-(4–5%)Mg-Mn-Zr-Sc alloys exhibit an enhanced recrystallization temperature. The general features of the dislocation and grain-boundary anelasticity that have been established for the binary Al-Mg alloys are retained; i.e., (1) the decrease in the dislocation density in the process of recrystallization of cold-worked alloys leads to the formation of a pseudo-peak in the curves of the temperature dependences of internal friction (TDIF) and to a decrease in the critical amplitude of deformation corresponding to the onset of dislocation motion in a stress field; (2) the precipitation of the β phase suppresses the grain-boundary relaxation; (3) the dissolution of the β phase, the passage of the magnesium atoms into the solid solution, and the precipitation of the β’ phase upon heating hinder the motion of dislocations; (4) the coarsening of the highly dispersed particles containing Zr and Sc increases the dislocation mobility. The grain-boundary relaxation and dislocation-impurity interaction and their temperature dependences, as well as processes of the additional alloying of the binary alloys by Mn, Cr, Zr, and Sc, have been estimated quantitatively.  相似文献   

14.
The effects of minor Sc and Zr additions on the mechanical properties and microstructure evolution of Al−Zn−Mg−Cu alloys were studied using tensile tests, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The ultimate tensile strength of the peak-aged Al−Zn−Mg−Cu alloy is improved by about 105 MPa with the addition of 0.10% Zr. An increase of about 133 MPa is observed with the joint addition of 0.07% Sc and 0.07% Zr. For the alloys modified with the minor addition of Sc and Zr (0.14%), the main strengthening mechanisms of minor addition of Sc and Zr are fine-grain strengthening, sub-structure strengthening and the Orowan strengthening mechanism produced by the Al3(Sc,Zr) and Al3Zr dispersoids. The volume of Al3Zr particles is less than that of Al3(Sc,Zr) particles, but the distribution of Al3(Sc,Zr) particles is more dispersed throughout the matrix leading to pinning the dislocations motion and restraining the recrystallization more effectively.  相似文献   

15.
The static recrystallization behavior of 7075 aluminum alloy containing Al3(Sc,Zr) phase prepared by casting and the relationship between recrystallization behavior and mechanical properties were studied. The addition of Sc and Zr made the Sc–Zr–7075 aluminum alloy remain the most of fibrous structure and high-density dislocations formed in the extrusion process, resulting in the recrystallization fraction of the alloy decreasing from 35% to 22%, and the corresponding fraction of substructure increasing from 59% to 67%. The Sc and Zr effectively inhibited the recrystallization behavior of 7075 aluminum alloy mainly, which was attributed to the fact that the existence of fine and coherent Al3(Sc,Zr) phase (r = 35 nm, f = 1.8×10−3) strongly pined the dislocations and grain boundaries, preventing the dislocations from rearranging into sub-grain boundaries and from developing into high angle grain boundaries, and further hindering the formation and growth of recrystallized core of the alloy.  相似文献   

16.
Al-0.3Sc-0.15Zr-TiB2 composites with varying additions of Mg were cast through a novel processing technique using oil Quenched Investment Casting (QIC). Addition of Mg resulted in grain refinement of the composite. Al3(Sc, Zr) primary particles and TiB2 are responsible for grain refinement in these composites. Presence of fine nanosized uniformly distributed precipitates of Al3(Sc, Zr) at the peak age condition together with TiB2 particles increase the strength and ductility of the composites. The presence of Sc and Zr reduces the size of TiB2 particles down to 10 nm. The optimum magnesium content in the composites studied lies between 3.5 and 6%.  相似文献   

17.
添加微量Sc、Zr对超高强铝合金微观结构和性能的影响   总被引:1,自引:0,他引:1  
采用低频电磁铸造技术制备Al-9Zn-2.8Mg-2.5Cu-x Zr-y Sc(x=0,0.15%,0.15%;y=0,0.05%,0.15%)合金,借助金相显微镜、扫描电镜、透射电镜、力学性能测试等手段分别对其均匀化、热挤压态、固溶态和时效态的组织与性能进行对比分析。结果表明:添加微量Sc和Zr,会在凝固过程中形成初生Al3(Sc,Zr),可显著细化合金铸态晶粒;均匀化时形成的次生Al3(Sc,Zr)粒子可以强烈钉扎位错和亚晶界,有效抑制变形组织的再结晶,显著提高合金的力学性能。与不含Sc、Zr的合金相比,含0.05%Sc和0.15%Zr的合金经固溶处理和峰值时效处理后其抗拉强度和屈服强度分别提高172 MPa和218 MPa,其强化作用主要来自含Sc、Zr化合物对合金起到的亚结构强化、析出强化和细晶强化。  相似文献   

18.
含钪7xxx系铝合金的再结晶   总被引:1,自引:0,他引:1  
采用金相显微镜和透射电子显微镜研究了含钪Al-Zn-Mg-Cu-Zr系铝合金组织的再结晶,测试了不同温度下退火1h合金的硬度。结果表明:含0.20%Sc的7xxx系铝合金(冷变形量50%)的再结晶起始温度为475℃,再结晶终了温度为525℃。合金在均匀化以及热加工过程中析出细小、弥散的二次A l3(Sc,Zr)粒子钉扎位错、亚晶界和晶界,使回复过程中的位错运动受阻,保持基体内较高的位错的密度,阻碍加热时位错重新排列呈亚晶界以及更进一步发展成大角度晶界的过程;阻碍了再结晶核心长大过程,阻碍大角度晶界的迁移,从而提高再结晶温度。  相似文献   

19.
The effects of trace Sc, Zr, and Ti on the microstructure and hardness of Al alloys with high Mg content (Al-6Mg, Al-8Mg, and Al-10Mg) were studied by optical microscope, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Brinell hardness. The grain size of the as-cast alloys was refined by the addition of Sc and Zr, and it was further refined by the addition of Ti. With the same contents of Sc, Zr, and Ti, an increase in Mg content was beneficial to the refinement due to the solution of Mg into α-Al. The refined micro-structures of the as-cast alloys were favorable for Brineil hardness. Addition of Sc, Zr, and Ti to the Al-10Mg alloy results in the improve-ment of peak hardness and it is about 45% higher than that of the Al-10Mg alloy, which is due to fine precipitations of Al_3(Sc_(1-x)Zr_x), Al_3(Sc_(1-x)Ti_x), and Al_3(Sc_(1-x-y)Zr_xTi_y).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号