首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 971 毫秒

1.  活塞销材料20CrMo上沉积CrN涂层的摩擦性能研究  
   刘吉良  廖日东  陈国华  鲍珂  刘庆义  张鹏伟《内燃机学报》,2018年第3期
   在高强化柴油机活塞销材料(20CrMo)上沉积了CrN涂层,采用球-盘试验对比研究了20CrMo基材上沉积CrN涂层前后与Si3N4球配副的摩擦学性能差异.在干摩擦条件下,考察了室温、300、500、700和900,℃等温度下两种配副的摩擦系数和磨损率.在基础油PAO6润滑条件下,考察了不同运行速度和负荷对两种配副的摩擦性能的影响.同时,对PAO6和发动机用油5W40润滑下的摩擦性能进行了比较,结果表明:20CrMo基材沉积CrN涂层后的高温磨损机理发生了改变,其抗磨性能显著增强.在PAO6润滑下,基材沉积CrN涂层后降低了负荷对摩擦系数的影响.在5W40润滑下,CrN涂层的应用明显改善了高速重载工况下的摩擦学性能.    

2.  N_2流量对车用钢表面磁控溅射CrTiAlN涂层性能的影响  
   王军  张明《材料保护》,2018年第2期
   目前,关于N_2流量对磁控溅射CrTiAlN涂层性能影响的研究不多。在SDC99冷作模具钢表面以不同N_2流量条件磁控溅射CrTiAlN涂层,采用扫描电镜、X射线衍射仪、显微硬度仪、显微镜和摩擦磨损试验分析涂层性能。结果表明:随着N_2流量的降低,涂层中Cr元素含量也随之下降,而N元素含量则逐渐增大,CrN(211)晶面的衍射峰缓慢增加,而CrN(200)衍射峰明显增加;CrTiAlN涂层硬度较基材提高约25%,随N_2流量降低,涂层的硬度逐渐增大;在60 m L/min的N_2流量下制备的CrTiAlN涂层和基体间结合力最佳,涂层对表面磨粒磨损情况起到最佳改善效果,此时磨痕的"犁沟"深度与宽度都减小,涂层耐磨性得到显著提高。    

3.  碳膜与CrN-Cu膜的摩擦学性能对比  被引次数:1
   杜军  付永辉  田林海  朱晓东  何家文《有色金属》,2004年第56卷第2期
   采用自制薄膜球盘磨损试验机 ,研究用IBAD技术制备碳膜的碳膜的摩擦学性能 ,并与CrN Cu膜进行对比。结果表明 ,碳膜的摩擦系数明显低于CrN Cu膜。CrN Cu随载荷增加摩擦系数增大 ,而类石墨膜却出现随载荷增大摩擦系数减小。CrN Cu膜的磨屑增大摩擦系数 ,碳膜的磨屑在一定程度上减小摩擦系数。    

4.  铁基合金激光熔覆层的摩擦学特性  被引次数:4
   宋杰  张庆茂  林晓聪  廖健宏《中国激光》,2008年第35卷第5期
   为评估激光熔覆技术修复塑料模具的磨损性能,采用铁基合金粉末在40Cr钢基体表面进行激光熔覆。激光熔覆层为上试样,GCr15钢球为下试样,利用HT-500磨损试验机进行摩擦磨损试验,研究在干摩擦、润滑条件下,激光熔覆层及其配副的摩擦学特性。利用表面形貌仪测量磨痕的深度和宽度,理论计算磨损率。研究结果表明,在干摩擦条件下,随载荷的增加,激光熔覆层及其配副的摩擦系数先降低后增加,当载荷为300 g时摩擦系数最小;随载荷的继续增加,摩擦系数逐渐增大。在相同载荷与润滑条件下,激光熔覆层及其配副的摩擦系数、磨损率、磨痕宽度均小于干摩擦条件下的值;随着磨损时间的增加,摩擦系数在磨损后期略有上升,磨损深度、磨损体积、磨损率逐渐增大。    

5.  刀具表面磁控溅射CrN涂层及其耐磨性能研究  
   钟厉  龙永杰  韩西《表面技术》,2018年第47卷第10期
   目的 提高刀具耐磨性能,延长刀具材料的使用寿命,减小刀具在加工过程中的磨损。方法 采用射频磁控溅射法在高速钢刀具表面沉积CrN涂层,用XRD、FESEM等分析涂层的组织结构与微观形貌,用X射线谱仪(EDS)测量涂层成分含量及其分布,用划痕仪测定膜基结合力,用球-盘磨损仪进行磨损实验。探讨不同摩擦条件下涂层的耐磨性能,探究不同摩擦条件对未镀膜刀具与镀膜刀具摩擦学性能的影响,对比分析摩擦系数、磨痕深度、磨痕宽度随参数变化的规律。结果 磁控溅射制备出结构致密、轮廓清晰、表面平整度趋于光滑的CrN涂层,涂层呈现三角锥形貌,具有明显的CrN(111)择优取向,膜基结合力为31.6 N。磨损试验表明,高载荷条件下(载荷5 N),未镀膜刀具磨损较严重,磨痕颜色较深,磨痕深度与宽度分别为27.6、980.2 μm,摩擦系数为0.498。镀膜刀具磨痕两侧只有轻微的犁沟和较少的磨屑堆积,表面磨痕颜色较浅,磨损轻微,磨痕深度与宽度分别为2.25、570.8 μm,摩擦系数为0.314。结论 在高速钢刀具表面沉积CrN涂层能显著提高刀具的耐磨性能,刀具在磨损试验中磨痕深度、磨痕宽度和摩擦系数均较小。    

6.  TiN、CrN的环境摩擦磨损对比研究  被引次数:1
   谢红梅  聂朝胤《新技术新工艺》,2010年第6期
   采用直流叠加脉冲偏压电弧离子镀技术在45钢表面沉积了TiN、CrN薄膜。用显微硬度计测试了薄膜的硬度,用划痕仪测量了薄膜的膜基结合力,用球-盘式摩擦磨损试验机评价了不同介质条件下(干摩擦、水润滑、油润滑)TiN、CrN薄膜的摩擦学特性,用表面轮廓仪测试了薄膜磨痕处的磨损轮廓,用扫描电镜(SEM)观察了薄膜磨痕形貌。结果表明,相对于干摩擦条件下,在水润滑和油润滑条件下TiN和CrN薄膜的摩擦因数和磨痕深度都有所降低。在相同的介质条件下,CrN薄膜的摩擦因数和磨痕深度始终小于TiN薄膜。    

7.  激光熔覆层中非晶组织对摩擦学的影响  被引次数:4
   梁工英  黄俊达  苏俊义《中国激光》,2000年第27卷第10期
   使用 5k W CO2 激光器对铝合金表面的 Ni- Cr- Al涂层进行熔覆处理 .分析发现 ,熔覆层中存在大量的非晶组织 .利用差热分析 DTA 方法半定量地确定非晶组织的含量 ,并对不同非晶含量的试样与灰铸铁进行摩擦磨损试验 .结果表明 ,激光熔覆试样的磨损量非常小 ,非晶含量越高 ,磨损量越小 .激光熔覆试样的摩擦系数在油润滑条件下相差不大 ,灰铸铁的摩擦系数在磨程 2 km后趋于稳定 ,且均小于 0 .1    

8.  磁控溅射MoS2-Ni复合膜的结构与性能研究  
   韦春贝  欧文敏  侯惠君  林松盛  代明江  石倩《表面技术》,2017年第46卷第10期
   目的 提高MoS2薄膜在大气环境下的摩擦学性能.方法 采用离子源复合磁控溅射技术制备了MoS2-Ni复合膜,通过改变Ni靶功率获得不同Ni掺杂量的复合膜,研究不同Ni掺杂量对复合膜结构及摩擦学性能的影响.采用扫描电镜(SEM)、X射线衍射仪(XRD)、显微硬度计、洛氏硬度计、球-盘式摩擦磨损试验机以及3D轮廓仪,对复合膜显微结构和性能进行研究.结果 复合膜以柱状晶结构生长,增加Ni含量可以细化晶粒,使复合膜的结构更加致密.复合膜硬度在250~446HV之间,且随Ni含量的增加,复合膜的硬度提高.复合膜具有良好的膜/基结合力,结合力达到HF1级.MoS2-Ni复合膜的摩擦系数在0.10~0.23之间,随Ni含量的增加,虽然复合膜的摩擦系数增加,但由于磨损过程形成稳定的转移膜粘着在对磨球表面,因而使得磨损率降低,耐磨寿命提高.结论 Ni掺杂可以提高复合膜的致密度、硬度以及结合力,增强复合膜的耐磨性能.    

9.  钛表面不同厚度氧化钛纳米管层的摩擦磨损行为*  
   罗锦洁  冯波  郭振永  范兴平  屈树新《中国表面工程》,2012年第25卷第4期
   为了改善钛的摩擦学性能,采用阳极氧化法在钛表面制备了纳米管径约100nm,厚度分别为500nm、1 000nm和1 500nm的TiO2纳米管层,并在450℃保温3h进行热处理。对试样的表面形貌、显微硬度和粗糙度进行测试。利用摩擦磨损试验考察了热处理前后不同试样在大气环境下的摩擦磨损行为。结果表明:干摩擦下,纳米管层的存在降低了钛与GCr15轴承钢球之间的摩擦系数;随TiO2纳米管层厚度的增加,试样的摩擦因数逐渐降低,磨损逐渐下降;热处理使纳米管由无定型氧化钛转变为锐钛矿晶型,进一步降低了摩擦因数,增加了钛的耐磨性能;纳米管层的磨损机制为磨粒磨损,接触疲劳磨损和粘着磨损。    

10.  含硅无氢非晶碳基薄膜的摩擦磨损性能  
   王福  谢明玲  张广安  王立平  薛群基《中国表面工程》,2017年第30卷第1期
   为了研究Si掺杂对无氢非晶碳基薄膜摩擦磨损性能的影响,利用直流磁控溅射技术在单晶硅和304不锈钢基底上沉积不同Si含量的无氢非晶碳基薄膜。采用SEM、Raman光谱、纳米压痕仪等分析手段对薄膜的成分、结构和力学性能进行表征。利用球盘式往复摩擦试验机测试薄膜在无润滑条件下的滑动摩擦磨损性能。结果表明:Si掺杂能降低薄膜内应力和促进sp3杂化,高于10%的Si原子导致薄膜硬度增加。在不同湿度条件下,Si掺杂并未明显影响溅射无氢非晶碳基薄膜的摩擦因数;相反,含Si薄膜在不同测试条件下都具有较高的磨损速率。薄膜磨损速率随相对湿度增加而减小,随Si含量增加而增加;高Si含量薄膜在低湿度条件下具有明显不稳定的摩擦因数和显著增加的磨损速率。这意味着在设计和发展性能优异的无氢非晶碳基摩擦学涂层时,应充分考虑Si掺杂导致的性能损失。    

11.  不同测试条件下TiN薄膜的摩擦学特性研究  
   谢红梅  聂朝胤《真空》,2009年第46卷第4期
   采用电弧离子镀技术在45#钢衬底表面沉积了TiN薄膜.用显微硬度计测试了薄膜的硬度,用球一盘式摩擦磨损试验机评价了在不同测试条件下(干摩擦,水润滑,油润滑)TiN薄膜的摩擦学性能,用表面轮廓仪测试了磨痕处的磨痕轮廓,用配有能谱仪(EDS)的扫描电镜(SEM)观察和测试了磨痕形貌和磨痕处主要化学元素组成.结果表明,相对于干摩擦,水润滑和油润滑条件下,TiN薄膜的摩擦系数和磨痕深度都有明显降低的趋势.干摩擦条件下,薄膜表现为磨粒磨损和氧化磨损;水润滑条件下,薄膜表现为疲劳磨损,水对薄膜起到边界润滑作用;油润滑条件下,薄膜几乎无磨损,油起到流体润滑作用.    

12.  MCPA6/改性聚硅氧烷复合材料的摩擦磨损性能  
   梁杰铭  林志勇  周雪梅  李勇  洪海艺《工程塑料应用》,2015年第43卷第5期
   采用阴离子聚合法制备了浇铸尼龙6 (MCPA6)/改性羟基封端聚二甲基硅氧烷(MHPDMS)原位复合材料,研究了不同MHPDMS含量对复合材料在水润滑及干摩擦条件下的摩擦磨损性能影响.结果表明,在干摩擦条件下,复合材料的摩擦系数随滑动时间增加先增大后减小最后达到平衡,随着MHPDMS含量的增加,复合材料在稳定阶段的摩擦系数变化不大,但是磨损量逐渐减小,MHPDMS质量分数为4%的复合材料磨损量仅为MCPA6的25%;在水润滑条件下,复合材料的摩擦系数随滑动时间增加先增大后平衡,随着MHPDMS含量的增加,复合材料的稳定摩擦系数基本没有变化,磨损量先减小后增大,当MHPDMS质量分数为2%时,磨损量最小,为MCPA6的50%左右.复合材料在水润滑条件下的稳定摩擦系数比干摩擦条件下的小,但磨损量比干摩擦条件下的大很多.复合材料在干摩擦条件下的磨损机理主要是粘着磨损和疲劳磨损,而在水润滑条件下主要为犁削磨损和磨粒磨损.    

13.  盐浴软氮化42CrMo的摩擦学性能分析  
   李冰月《润滑与密封》,2018年第43卷第6期
   对42CrMo进行盐浴软氮化处理,分析盐浴软氮化处理对42CrMo试样硬度的影响,研究不同润滑条件下42CrMo试样的摩擦学性能,分析其摩擦磨损机制。结果表明:盐浴软氮化处理过的42CrMo的平均硬度为HV747.33,约是未处理基体的(HV310)的2.5倍;在其他条件相同时,随载荷的增加,干摩擦条件下42CrMo的摩擦因数先增加后减小,边界润滑和油润滑条件下的摩擦因数不断增加;42CrMo在干摩擦条件下的摩擦因数、表面磨痕深度和磨损量均要明显高于边界润滑和油润滑条件下;在干摩擦条件下42CrMo的磨损机制为严重的黏着磨损和塑性变形,边界润滑条件下42CrMo表面磨损减缓,有轻微犁沟;油润滑条件下42CrMo表面为磨粒磨损,无明显变形。    

14.  不同环境下AlSiFeMm非晶纳米晶涂层摩擦磨损行为研究  
   刘奇  程江波  冯源  梁秀兵  陈永雄  胡振峰《表面技术》,2019年第4期
   目的研究AlSiFeMm(Mm为镍包混合稀土)非晶纳米晶涂层在干摩擦和3.5%NaCl溶液中的摩擦磨损行为。方法采用Rtec(MFT-3000)往复式磨损试验机测试涂层在干摩擦条件和有腐蚀介质条件下的摩擦磨损性能,使用LEXTOL3000-IR非接触三维表面轮廓仪测定涂层的磨损体积和磨痕的三维形貌,利用扫描电子显微镜对磨痕进行形貌观察和成分分析。结果铝基非晶纳米晶涂层的摩擦系数随着载荷的增加而不断减小。干摩擦条件下,铝基非晶纳米晶涂层的磨损率随着载荷的增加而增大,当磨损速度为10 mm/s、载荷为15 N时,涂层相对耐磨性为6061铝合金的2.5倍,其磨损机制为脆性剥落、磨粒磨损,并伴随氧化磨损。在3.5%NaCl溶液中,涂层的磨损率随着载荷的增加而逐渐降低,当磨损速度为35 mm/s、载荷为30N时,涂层的耐磨性能约为6061铝合金的8倍,其失效机制主要为剥层磨损和腐蚀磨损。结论铝基非晶纳米晶复合涂层在干摩擦和腐蚀介质中均表现出较为优异的耐磨性能,可以作为轻质合金涂层应用于表面防护领域。    

15.  医用锻造CoCrMo合金等离子氮化微观结构及摩擦性能分析  
   徐林  巴德纯《稀有金属材料与工程》,2017年第46卷第1期
   采用高压直流等离子体氮化技术,对医用锻造钴铬钼合金进行表面氮化处理,考察了氮化温度及时间对钴铬钼合金摩擦性能及润湿性能的影响。运用XRD衍射仪及场发射扫描电镜分析氮化层物相组成及表面微观形貌;显微硬度计和光学动/静态接触角仪测试合金表面显微硬度及接触角数值;利用球-盘摩擦实验在干摩擦条件下对氮化层的摩擦磨损性能进行测试。实验结果表明:钴铬钼合金试样经直流等离子体氮化处理后,氮化层厚度、表面粗糙度及显微硬度值显著增加,亲水性能及耐磨损性能得到明显改善。在较低的氮化温度及较短的氮化时间内,氮化试样物相主要由σ-CoCr相及CrN相组成;随着氮化温度及时间的增加,氮化试样物相中还检测到硬质化合物相Cr2N。同未处理试样相比,氮化试样的磨损率及磨痕宽度减小,氮化参数为800℃-8h时磨损率最低,磨痕宽度最窄,耐磨损性能最佳。未氮化试样磨损机制以粘着磨损为主;氮化试样主要以疲劳磨损、磨粒磨损及轻微粘着磨损为主。    

16.  三种机械密封材料的摩擦磨损性能研究  
   王旭东  汪彩芬  朱彩强  严彪杰  黄大鹏  白彬《材料导报》,2017年第31卷第Z1期
   研究了3种核主泵用机械密封陶瓷材料(氮化硅、氧化铝和碳化硅)在室温干摩擦条件下及水润滑条件下分别与氮化硅陶瓷球对磨的摩擦磨损性能。研究结果表明,在与氮化硅球干摩擦的3种材料中氧化铝陶瓷具有最大的摩擦系数和最小的磨损质量,氮化硅具有最小的摩擦系数。在氮化硅陶瓷自配对摩擦副摩擦磨损试验中,水润滑条件下氮化硅摩擦系数及摩擦质量损失都有很大程度的减小,且摩擦系数随转速增加而减小。综合考虑力学性能和摩擦磨损性能,选择氮化硅陶瓷作为核主泵机械密封材料更合适。    

17.  CrN活塞环涂层的工艺制备与摩擦学性能研究  被引次数:2
   蔡志海  张平  赵军军  杜军  牛庆银《核技术》,2009年第32卷第6期
   论文采用多弧离子镀技术在活塞环表面制备了CrN涂层,系统地研究了不同N2含量对CrN涂层的相结构和纳米硬度的影响规律.并采用CETR微动摩擦磨损试验机比较研究了Cr电镀层与CrN涂层的高温微动摩擦磨损性能,研究结果表明:随着N2含量的增加,薄膜由Cr2N(211)相过渡到CrN(220)相;膜层的纳米硬度随N2含量的增加而增大,并出现两个峰值;与Cr电镀层相比,CrN涂层主要以磨粒磨损为主,犁沟较窄且平滑,抗高温粘着磨损性能明显增强,而且摩擦系数较小,具有较好的摩擦匹配性能,更适合用于活塞环服役的高温磨损环境.    

18.  多弧离子镀制备TiSiN-Cu涂层的结构和摩擦学性能  
   白雪冰  李金龙  朱丽慧  王永欣  王立平《表面技术》,2017年第46卷第11期
   目的 通过在TiSiN涂层中掺杂软金属Cu,提高TiSiN涂层的摩擦性能.方法 采用多弧离子镀技术,在316L不锈钢基体上沉积TiSiN-Cu涂层.用扫描电子显微镜(SEM)观察涂层的表面形貌,用X射线光电子能谱仪(XPS)和X射线衍射仪(XRD)来分析涂层的元素组成和相组成,通过纳米压痕硬度测试和摩擦磨损实验,表征不同Cu含量TiSiN-Cu涂层的力学性能和摩擦学性能.结果 Cu含量对TiSiN涂层的结构、硬度和摩擦性能有明显影响.Cu在涂层中主要以单质形式存在,由于与空气接触,涂层表面有少量的CuO.随着Cu含量的增加,TiN的晶粒尺寸先减小后增加,硬度先升高后降低.在Cu原子数分数为6.28%时,硬度达到最大值29.26 GPa.在干摩擦条件下,TiSiN-Cu涂层的磨损率在Cu原子数分数为12.93%时达到最低,为6.65×10-7 mm3/(N·m).在海水环境下,涂层的磨损率较大.结论 软金属Cu作为固体润滑颗粒可以明显改善TiSiN涂层的干摩擦性能,在海水条件下,摩擦与腐蚀的交互作用加速了涂层材料的损耗.    

19.  类金刚石薄膜在干摩擦、油和脂润滑条件下的摩擦学性能分析  
   白越  黄敦新  曹萍  高庆嘉《真空科学与技术学报》,2011年第31卷第5期
   通过钢/类金刚石(DLC)薄膜摩擦副在干摩擦4、122油和L252脂润滑条件下的球-盘摩擦学试验,对比分析润滑条件、载荷、速度对DLC膜摩擦系数的影响,利用原子力显微镜分析膜层磨损性能,研究润滑条件对膜层磨损寿命的影响。结果表明:油、脂润滑下DLC膜最大静摩擦系数分别减小了17%和38%;从0~2000 r/min转速范围内,DLC膜摩擦系数随转速增加而减小,油润滑下相比干摩擦DLC膜摩擦系数小15%~48%,脂润滑下相比干摩擦DLC膜摩擦系数在0~500 r/min转速范围小,超过500 r/min后干摩擦DLC膜摩擦系数小;油和脂润滑条件下,DLC膜层的磨损程度明显降低,磨损率相比干摩擦条件下分别减小了7.4倍和15.5倍。    

20.  电弧离子镀CrN涂层的制备及性能研究  被引次数:2
   杨娟  陈志谦  聂朝胤《金属热处理》,2009年第34卷第7期
   用电弧离子镀技术在W18Cr4V高速钢试样上制备了CrN涂层,采用X射线衍射仪、扫描电镜、能谱议、显微硬度仪、磨损试验机等对涂层的表面形貌、相结构、硬度和耐磨性进行了分析.对比研究了经工艺优化后的CrN涂层和TiN、TiAlN涂层以及未涂层钻头干式钻削7075铝合金的切削性能,得出了最佳的沉积偏压和切削转速.结果表明,偏压为-50~-150 V时,涂层均由Cr2N 相和CrN相组成,随偏压增加,涂层表面粗糙度降低,硬度和耐磨性增强;偏压过高,涂层的微观质量和性能反而下降.偏压为-100 V时,涂层的硬度和耐磨性最佳.CrN涂层可显著提高高速钢刀具的切削性能,减小刀具磨损,延长刀具寿命.其钻削性能优于TiN、TiAlN涂层,明显优于未涂层.2 230 r/min为CrN涂层的最佳切削转速,经工艺优化后的CrN涂层钻头平均寿命约为未涂层钻头的5倍,其破损机制属于粘着磨损.    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号