首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
热力参数对Ti-17合金等温锻件显微组织和力学性能的影响   总被引:1,自引:0,他引:1  
研究了富β相的α+β钛合金Ti-17,毛坯的原始状态(如组织形态、晶粒大小、均匀性)、热加工工艺路线、热处理制度及工艺参数对等温模锻件最终显微组织和力学性能的影响.结果表明,Ti-17合金等温锻造之前的自由锻预制毛坯对锻件的显微组织、力学性能有明显影响,直接采用晶粒较大的原始棒材在β相区等温锻造,锻件高倍组织中的α相呈鱼骨状,各项力学性能均较差;经自由锻预制坯的等温锻件显微组织细小而均匀,在两相区锻造时,获得细小均匀的等轴α组织;在β相区锻造时,获得细小均匀的网篮状α组织,各项力学性能满足要求.  相似文献   

2.
研究了α+β锻造、近β锻造和β锻造对TC17钛合金盘件的显微组织和主要力学性能的影响规律。结果表明:α+β锻造后的合金为等轴组织,近β锻造的合金为双态组织,β锻造的合金为网篮组织,3种工艺获得的显微组织较为典型;3种锻造组织的力学性能差异显著,等轴组织的室温拉伸强度较双态组织稍低,塑性最好,疲劳强度最高,但断裂韧性和蠕变性能相对较差;双态组织的拉伸强度最高,塑性较等轴组织稍有降低,蠕变性能相对等轴组织有较大提高,但其断裂韧性和疲劳强度相对较低;网篮组织的拉伸强度和塑性相对较低,但断裂韧性和蠕变性能均高于另外两种锻造组织。  相似文献   

3.
利用高速线材轧机制备Ti-6Al-4V合金小规格棒材(d10 mm),研究固溶与时效热处理工艺对棒材显微组织与力学性能的影响。结果表明:棒材组织主要由α相和β相组成,随着固溶温度从900℃升高到990℃,棒材中α相含量减少而β相含量逐渐增多,显微组织出现了由初生等轴α相向针状β相转变进而向全片层状β转变的过程,棒材拉伸强度逐渐升高,而伸长率明显降低;棒材在930℃固溶后进行时效处理,随着时效温度从450℃升高到650℃,β相转变组织分解析出α相,组织主要由(α+β)相和β相混合组成,α相不断集聚长大,使组织粗大,棒材抗拉强度降低,伸长率升高;经(930℃,30 min,水淬)+(550℃,4 h,空冷)热处理后,棒材强度和塑性达到最佳配合,抗拉强度为1031 MPa,伸长率为12.5%。  相似文献   

4.
研究了TB18钛合金棒材经β固溶缓慢冷却时效(BASCA)热处理后的显微组织和力学性能。结果表明,TB18钛合金棒材在β相区固溶后缓慢冷却条件下,α相在β晶界和晶内均有析出,晶内α相呈点状或短针状,晶界α相基本呈薄膜状镶嵌在β晶界上。冷却速度对晶界α相影响较大,当冷却速度为1℃/min时,晶界α相以透镜状在晶界上不连续析出,形成“项链”组织。随着冷却速度的降低,析出的晶界α相越来越多且相互连接为一体,并逐渐粗化呈连续的波浪状。缓慢冷却后形成的晶界α相对合金塑性和韧性不利,随着冷却速度的减小,合金塑性和韧性均降低。TB18钛合金棒材经过β相区固溶空冷+时效处理后,可获得在抗拉强度接近1300 MPa的水平下,延伸率达到8%,断裂韧性超过80 MPa·m1/2的优异综合性能。  相似文献   

5.
介绍了Ti-62222s合金成分、热加工过程及热处理工艺对其组织性能的影响,并综述了β区、α+β两相区固溶温度、固溶冷却速率,时效温度及时效时间等因素对合金显微组织及力学性能的影响。研究表明,β区锻造+两相区热处理+时效,α+β两相区常规锻造+三重热处理两种典型工艺制备的Ti-62222s合金具有最好的力学性能匹配。  相似文献   

6.
采用扫描电镜和透射电镜分析近β型Ti-1300钛合金在初始锻造态、固溶+淬火态(β和α+β固溶态)以及固溶+时效态下的显微组织变化。结果表明:锻造态合金中初生α相内部发生孪生切变行为,基体β相晶内发生β→α相变。合金经过α+β固溶淬火处理,残留的初生α相中仍然可观察到细小孪生α相。孪生α相有两种不同变体(α1和α2),互成60°生长方向,而且与基体α相也成60°的孪生关系,其间的晶体学取向关系为:{1120}α,twinning//{1120}α,〈 0001〉α,twinning//〈 1101〉α。Ti-1300钛合金与大多数近β型钛合金的时效特征相类似。  相似文献   

7.
《铸造技术》2016,(9):1852-1854
通过对47Ti-45Zr-5Al-3V合金进行不同温度退火处理,对其微观组织与性能的演变规律进行研究。结果表明,经过高温锻造后的47Ti-45Zr-5Al-3V合金由α+β相组成,在550℃以上温度热处理时合金中α相向β相转变。随温度升高合金中β相含量增加,当温度为800℃时α相全部转变为β相。热处理对47Ti-45Zr-5Al-3V合金的力学性能的影响取决于α相和β相含量。合金抗拉强度随β相含量增加降低,而伸长率增加。  相似文献   

8.
研究了Ti-22Al-25Nb合金环形件的制备工艺和组织性能关系。结果表明:Ti-22Al-25Nb合金增加棒材改锻的次数可提高组织均匀性,细化晶粒,从而显著提高合金的室温塑性。对棒材在α2+B2+O三相区(970℃)和α2+B2两相区(1050℃)轧制可分别获得双态组织和板条组织的环形件。两种组织的室温抗拉强度均在1100 MPa以上,室温伸长率在6.5%以上。两种组织相比,双态组织具有更高的强度,而板条组织的塑性更好。根据试验结果,Ti-22Al-25Nb合金在生产应用时,棒材的锻造镦拔次数应不低于8次,环形件轧制应选择在α2+B2两相区(1050℃)。  相似文献   

9.
研究了轧制温度、变形量以及热处理工艺对Ti-1300合金显微组织的影响,并讨论了热加工工艺与合金组织结构以及形貌之间的联系规律。结果表明:两相区轧制后的加工态Ti-1300合金主要由等轴的β相和球状α相组成,随轧制温度向合金相变点温度的升高,α相逐渐溶解在β基体上,因而β单相区轧制的合金主要由等轴的β相晶粒组成,而合金的晶粒随变形量的增加而破碎越充分,组织也更加细小、均匀。两相区固溶处理后的Ti-1300合金在晶界和晶间析出球状以及条状α相,弥散分布于亚稳定β基体,产生细晶强化效应,而β单相区固溶处理后的合金主要由平均晶粒尺寸为60μm的等轴β相组成。两相区固溶处理后的时效态Ti-1300合金的组织主要由条状初生αp相、针状次生αs相以及β基体组成,热轧温度和变形量对时效态Ti-1300合金中αp相的形貌特征影响较小,但αp相和αs相都随时效温度的升高而不同程度的长大,针状次生αs相弥散分布在β基体上。  相似文献   

10.
采用铸造、锻造工艺获得组织均匀的Ti-1Al-8V-5Fe(Ti185)合金棒材,分析了该合金的组织形貌和力学性能。结果表明,Ti185合金中没发现成分偏析导致的"β斑"或Fe元素的富集现象。棒材中初始β相晶粒尺寸达到800μm,在β相晶粒内部析出高密度的α相。在室温下,锻态Ti185合金的抗拉强度为1192 MPa,伸长率为1.7%。经过950℃的固溶热处理及450℃的时效处理后,热处理态的Ti185合金α相尺寸和数量明显减少,合金的室温抗拉强度仍达到1275 MPa,伸长率同样达到1.65%。在400℃的高温拉伸条件下,锻态Ti185合金抗拉强度较室温大幅降低,抗拉强度为877 MPa。而热处理态的Ti185合金抗拉强度并没有大幅改变,抗拉强度为1375 MPa。  相似文献   

11.
进行了大规格TC17钛合金棒材的镦粗压缩试验,然后进行了800℃/4 h水冷和630℃/8 h空冷,研究了β锻造工艺参数对合金微观组织和力学性能的影响规律。结果表明,变形温度对α相形态影响不大,原β晶界的位置由α相晶界占据,晶内α相是网篮交错分布;随着变形温度升高,β晶粒尺寸增大,室温和高温抗拉强度以及塑性下降,断裂韧性略有增大。随着变形程度增大,晶界处的α相发生弯折呈不连续分布,原β晶粒出现拉长现象,室温和高温强度、塑性增大,断裂韧性略有下降。综合考虑力学性能要求,TC17合金的β锻造变形温度不应高于相变点以上60℃,变形程度应控制在60%以内。  相似文献   

12.
采用正交试验方法,研究了固溶温度、时效温度和时效时间对?6.5 mm Ti-1300F合金丝材室温拉伸性能和显微组织的影响。结果表明:经α+β两相区固溶+时效处理后,合金的显微组织由细小等轴初生α相、弥散针状次生α相和β基体组成。时效温度对合金强度和塑性的影响最为显著,固溶温度次之,时效时间的影响最小。根据试验结果对热处理工艺进行了优化,经(760~790)℃/1 h, WQ+(500~540)℃/4 h, AC处理后,Ti-1300F合金丝材获得强度和塑性的良好匹配。  相似文献   

13.
对Φ200 mm×80 mm Ti6246合金棒坯在985℃(β锻造)、935℃(近β锻造)、900℃(α+β锻造)3种温度下进行锻饼试验,考察锻造温度对饼坯显微组织和力学性能的影响。结果表明:采用β锻造工艺,获得的显微组织为片层状α相+β转变组织;采用近β锻造工艺,可获得由球形α相+片层状α相+β转变组织构成的“三态组织”;采用α+β锻造工艺,可获得与原始组织相同的球状α相+β转变组织,但锻造后球状α相含量减少。随着锻造温度降低,Ti6246合金饼坯的室温和高温抗拉强度及屈服强度呈现先降低再升高的趋势,伸长率无显著变化;高温蠕变性能无明显变化趋势;427℃下热暴露100 h后,室温抗拉强度和屈服强度呈现先升高再降低的趋势,塑性指标无显著变化。  相似文献   

14.
对Ti-6Al-6V-2Sn钛合金棒材进行锻造、固溶及时效处理,利用光学显微镜、XRD、SEM及力学性能试验对该合金不同固溶、时效工艺下的显微组织和力学性能进行研究。结果表明:Ti-6Al-6V-2Sn钛合金锻棒的组织为初生等轴α+β转变组织,合金经固溶处理后的组织为初生α_p相、马氏体α′、α″相和亚稳β相,强度有所降低,断面收缩率有所上升,说明固溶处理有一定的软化作用,但随着固溶温度升高,强度增加,塑性下降;经固溶处理后的棒材在时效处理过程中,亚稳态组织析出细小弥散的次生αs相,使合金强度明显强化,塑性略有降低,且随着时效温度的升高,强化效果下降,塑性随之提高。经过综合比较,并考虑强塑性的最佳匹配,可以确定本实验中Ti-6Al-6V-2Sn合金固溶时效热处理的优化工艺为(880℃,1 h,WQ)+(580℃,4 h,AC)。  相似文献   

15.
研究近等温锻造+梯度热处理工艺对Ti-24Al-15Nb-1.5Mo/TC11双合金焊接接头的显微硬度变化、合金元素扩散趋势、显微组织特征和拉伸性能的影响.结果表明:近等温锻造+梯度热处理能使焊接接头得到强化.经近等温锻造和梯度热处理后焊缝熔合区形成的马氏体α'和α"相分解为α(α2)+β的平衡组织;TC11合金热影响区的魏氏组织转变为网篮组织;试样具有良好的500℃高温综合性能(σb:840 MPa,δ:18.5%,ψ:65%).  相似文献   

16.
通过OM、SEM、TEM和EBSD研究了Ti-1300合金在连续冷却条件下组织演变规律和亚稳β相的分解形式,并采用高精度膨胀法建立了合金的连续冷却转变动力曲线。结果表明:当连续冷却速度比较缓慢时,Ti-1300合金发生β→α+β转变,并获得集束状的显微组织;而当冷却速度0.3°C/sv1.5°C/s时,Ti-1300合金发生β→α+β+βm转变,并获得细针状的α+β组织和残余的βm相;当冷却速度大于3°C/s时,Ti-1300合金基本获得全部β相,所以把3°C/s认为是合金的临界冷却转变速度。在缓慢冷却过程中,Mo当量梯度是合金中α相生长主要动力。随着冷却速度的增加,Ti-1300合金的显微硬度先增加后降低,在冷却速度为0.3°C/s时,显微硬度达到最大值。  相似文献   

17.
研究了热处理工艺对原始组织为粗大β晶粒+少量细小α晶粒的紧固件用TB2钛合金棒材组织与力学性能的影响。结果表明:随着固溶温度的升高,棒材组织中α相含量逐渐减少,β晶粒尺寸明显增大,经780℃固溶后强度和塑性匹配最好;固溶+时效处理时,随着时效温度的升高,棒材组织中析出的次生α相体积分数先增加后减少,且棒材强度先升高后降低;经固溶+预拉伸变形+时效处理后,棒材组织中晶粒有一定细化,次生片状α相含量增多,抗拉强度较固溶后直接时效提高了近10%。  相似文献   

18.
研究β锻造Ti-6Al-4V(Ti64)合金拉伸性能和断裂韧性的各向异性。对饼材不同取向的显微组织和晶体学织构进行分析,同时研究取样方向对拉伸性能、断裂韧性的影响。结果表明,Ti64饼材原始β晶粒呈扁平状。室温下合金主要由α相构成,β锻造后β→α相变产生的多个α相变体导致α相织构强度较低。力学性能各向异性的主要影响因素为原始β晶粒形貌以及与α织构相关的滑移。采用J积分阻力曲线法测定合金的起裂韧性,并将起裂韧性KJIC分为内在韧性和外在韧性。内在断裂韧性各向异性主要与原始β晶粒对裂纹尖端塑性区范围的影响相关;外在断裂韧性主要与α片层与集束对裂纹曲折程度的影响相关。  相似文献   

19.
通过多道次温轧工艺,在650,700和750℃下成功制备出直径为Φ12 mm、长为数米的高强度超细晶Ti-6Al-4V合金棒材。研究结果表明,轧制温度为650℃时Ti-6Al-4V合金棒材具有最佳的力学性能,屈服强度和抗拉强度分别为1200和1300 MPa,伸长率为10%。通过光学显微镜、电子背散射衍射和X-射线衍射对变形过程中的合金微观组织和织构演变进行了观测。结果显示,温轧后的超细晶组织及α和β相对提高合金的力学性能有重要的作用,表明多道次温轧工艺可以有效地节约小尺寸棒材的生产成本和时间,从而提高效益。  相似文献   

20.
TC17钛合金是一种富β稳定元素的α+β两相钛合金,其名义成分为Ti-5Al-2Sn-2Zr-4Mo-4Cr,具有高强度、高断裂韧性及高淬透性.美国已成功地将其用于军用和民用航空发动机的压气机盘、风扇盘等零件上.该合金一般在β相区锻造,锻后采用两重退火,从而获得网篮编织α组织,有很高的断裂韧性和蠕变抗力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号