首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, a new process for increasing the drawability of square cups has been developed. A circular blank is pushed by a flat-headed square punch through a conical die with a square aperture. The deformed blank conforms to the square shape of the die throat and finally a square cup is obtained. The developed technique has a simple tooling set in which the drawing process can be efficiently preformed in a single-acting stroke without using draw beads or blankholder. A commercial finite element simulation package, DYNAFORM, is used to investigate the developed setup in order to determine the optimum die cone angle. An experimental setup is built accordingly with a half cone angle of 18°. Brass alloy (67/33 Cu–Zn) and commercially pure aluminum (Al99.5w) sheets are used in the experimentations. The effects of the original blank thickness (to=1, 1.5, 2, 2.5, and 3 mm) and the orientation of the blank rolling direction (0°, 22.5°, 45°, and 67.5°) to the punch side on the limiting drawing ratio (LDR) and punch load are experimentally investigated. The present process successfully produces square cups with drawing ratios of 2.92 for brass and 2.74 for aluminum. The new process has shown superiority over the conventional methods through achieving high drawing ratio especially for thick sheets (2–3 mm). Comparison between experimental results and the available published work showed that the required punch force in the new process is significantly reduced while the LDR is increased.  相似文献   

2.
Hydromechanical deep drawing of cups with stepped geometries   总被引:1,自引:0,他引:1  
This paper deals with the hydromechanical deep drawing of metal cups with complex stepped geometries. Two materials, a low-carbon steel (DC04) and stainless steel (DIN 1.4301), have been researched. A die set with a maximum possible deep drawing ratio β0,max = 3.0 for a punch diameter 100 mm has been designed and constructed. The die set is designed to withstand fluid counter pressures up to 200 MPa. Pressure control is achieved using a micro-metering pressure control valve. The process is initially simulated using the FEM solver LS-DYNA. Experiments have been conducted with two punch geometries. The punch geometries consist of cylindrical and conical wall segments. Complex positive and negative features are manufactured in the punch bottom face. The ability of transferring complex features from the punch onto the blank surface with high deep drawing ratios is investigated. Extended limiting deep drawing ratios of β0,max = 3.0 for DC04 and β0,max = 2.875 for DIN 1.4301 have been achieved.  相似文献   

3.
A plate forging process of tailored blanks having local thickening for the deep drawing of square cups was developed to improve the drawability. A sheet having uniform thickness was bent into a hat shape of two inclined portions, and then was compressed with a flat die under restraint of both edges to thicken the two inclined portions. The bending and compression were repeated after a right-angled rotation of the sheet for thickening in the perpendicular direction. The thickness of the rectangular ring portion equivalent to the bottom corner of the square cup was increased, particularly the thickening at the four corners of the rectangular ring undergoing large decrease in wall thickness in the deep drawing of square cups became double. The degree of thickening can be adjusted by controlling the punch stroke in the bending. By using the tailor blanks having local thickening, not only the decrease in wall thickness at the bottom corner of the square cup was prevented, but also the limiting drawing height of the cup without fracture was increased to 28.3 mm, whereas that for the uniform blank was 21.3 mm.  相似文献   

4.
Cold Deep Drawing of Commercial Magnesium Alloy Sheets   总被引:2,自引:0,他引:2  
K. Mori  H. Tsuji 《CIRP Annals》2007,56(1):285-288
A cold deep drawing process for commercial AZ31 magnesium alloy sheets was developed. The commercial sheets were successfully formed into circular cups at room temperature by optimising the annealing temperature of the sheets, i.e. a limiting drawing ratio of 1.75 was attained for an annealing temperature of 500 °C. The increases in elongation, n-value and r-value, and the decrease in flow stress effective in the improvement of drawability were obtained for the annealing. The apparatus for cold deep drawing without heating becomes much simpler than that for the conventional warm deep drawing. The effects of the lubricant, the clearance between the die and the punch and the corner radius of the punch on the drawability were examined. The limiting drawing ratio was increased by applying force onto the edge of a blank through the die corner. In addition, cold deep drawing of magnesium alloy square cups was performed. It was found that comparatively shallow magnesium alloy cups are satisfactorily formed at room temperature without heating.  相似文献   

5.
Sufficient data have now been generated to assess the influence of material, process, and tooling variables on the limiting drawing ratio, when deep drawing cylindrical cups from circular blanks. The influence of these parameters is less well understood in the deep drawing of nonaxisymmetric cups, and the data that exist have generally been collected from drawing tests. A theoretical approach is presented for predicting the limiting drawing ratio when deep drawing prismatic cups. For a given blank geometry, the drawing load is calculated to plastically deform the flange, overcome friction between the flange and the blank holder, and to bend the material over the die radius. Deformation in the cup wall is ignored. The onset of yielding in the flange is determined using a finite-element code. The calculated drawing load is compared to a theoretical maximum, and when the two values coincide, this yields the limiting blank size under the assumed processing conditions, i.e., blank holder force, die radius, blank shape, and coefficient of friction. The theoretical predictions were compared with experimental results when deep drawing square cups from optimum blank shapes, and the correspondence was found to be acceptable.  相似文献   

6.
In this paper an improved analytical method for estimating the limiting drawing ratio (LDR) for the first drawing stage is presented. In this method, the effects of parameters such as the geometry and the material properties of die arc region are taken into account for a more accurate determination of LDR. The results are compared to experiments and some other analytical methods reported in the literature. It is shown that the presented method is in good agreement with the experimental results and more accurate compared with other analytical methods. Using the presented method, the effect of some process parameters such as, coefficient of friction, strain hardening exponent, normal plastic anisotropy ratio, ratio of die arc radius to blank thickness and ratio of blank thickness to diameter on LDR is investigated.  相似文献   

7.
Deep drawing of a partially thickened blank, the thickness of which is somewhat larger at the punch head portion than at the flange portion, is investigated in an attempt to increase the limiting drawing ratio (LDR). A rigid-plastic finite element simulation is firstly used to predict the effect of the partially thickened blank on the increase in LDR. To confirm the result of the simulation, deep drawing experiments are carried out using partially thickened blanks that are produced by machining. In addition, spot welding and forging process methods are employed to produce partially thickened blanks. The finite elements simulation and experimental results show that when a partially thickened blank is used, the LDR increases appreciably compared with that for a normal blank of uniform thickness.  相似文献   

8.
A feasibility study on the tool temperature control to increase the deep drawability of Al-1050 sheet is performed. The conventional deep drawing process is limited to a certain limit drawing ratio (LDR) beyond which failure will ensue. The purpose of this study is to examine the possibilities of relaxing the above limitation through the tool temperature control, aiming towards a process with an increased LDR. The idea which may lead to this goal is strengthening the punch-nose radius part by cold punch which has frequently been potential failure area in cup drawing process, while heating the remainder of the blank to reduce the stress on the cup sidewalls. Over the ranges of conditions investigated, the deep drawability of Al-1050 is found to be strongly sensitive to the temperature of the die and punch. The experimental implementation shows that the tool temperature control is very effective way to promote deep drawability of Al-1050.  相似文献   

9.
Sheet hydroforming is a process of converting flat sheet into desired component geometry by using water pressure in a controlled manner. This paper dealt with sheet Hydromechanical forming (SHMF) of circular cup. In this process, blank is first placed on the lower die (a fluid chamber combined with draw ring) and then after sealing the blank between blank holder and draw ring, punch progresses to deform the blank. Pressure of the fluid chamber is also increased simultaneously with the punch progression. The present work endeavours to understand the effect of strain hardening exponent, anisotropy ratio and interfacial friction between blank and tools surfaces for different modes of deformation––stretching to drawing mode on sheet Hydromechanical forming of circular cups.A finite element (FE) model was developed for simulating the SHMF process using dynamic explicit, commercial code, LsDyna. The model after experimental validation used for studying the effect of above parameters on the process. The analysis reveals that higher cup depth with minimum thinning for forming dominated by stretching mode can be achieved with material of higher anisotropy ratio, strain hardening exponent by using a rough punch and effective lubrication at blank-die–blank holder interfaces. On the other hand in case of drawing as mode of deformation, thinning is influenced mainly by interfacial friction condition between blank and tool surfaces as compared to material properties.  相似文献   

10.
金属薄板成形的数值模拟技术在冲压件生产和模具设计中起着重要的作用。文章借助Dynaform软件对某方形盒制件拉深破裂现象进行数值模拟,分析其产生原因和影响因素,并利用正交实验找出防止该制件圆角破裂的拉深条件组合。结果表明,在冲压速度、凸模圆角半径、摩擦系数和板料厚度4个因素中,凸模圆角半径对盒形件拉深破裂的影响最大。为降低因圆角处板料剧烈减薄而产生破裂的几率,盒形件拉深时应采用较大的凸模圆角半径。  相似文献   

11.
通过实验研究了拉深凹模温度、拉深速度、压边间隙及润滑条件对细晶5083铝合金非等温拉深工艺的影响。实验结果表明:细晶5083铝合金板料在凹模温度为250℃以上具有良好的拉深成形能力。当凹模温度为275℃时,极限拉深比达到2.9;当在较佳的凹模温度不同的拉深速度下进行拉深时,得出细晶5083铝合金非等温拉深工艺在一定的拉深速度范围内对应变速率不敏感,在压头速度≤2mm/min时均能拉深成功。考虑了润滑层厚度和材料在升温过程中的热膨胀性能,通过实验得出的最佳压边间隙为1.9mm。选用水基石墨作为润滑剂,润滑层厚度达到0.3mm左右时拉深能够成功进行。  相似文献   

12.
The draw force and the blank-holder variations that are obtained when drawing with friction-actuated blank holding are determined theoretically for a urethane pad of particular dimensions. A prototype tooling for blanking and drawing of sheet metal of thickness 1 mm and less to cups of diameter 100 mm at draw ratio of 1.85 with such a blank holder has been designed, fabricated and tested. Experimental results from the above tooling are presented, these including the punch and blank-holder force variations with stroke and the thickness strains in the cup wall. The experimentally-measured punch force variations are compared with the theoretical predictions. The theoretical and the experimentally-measured blank-holding force variations are presented, together with the variation of critical blank-holding force that is needed to suppress wrinkling. The differences between the theoretical and the experimental force variations are discussed.  相似文献   

13.
A new, simple and practically applicable equation, including the normal anisotropy value R and the strain hardening exponent n, for estimating the limiting drawing ratio LDR in cup-drawing of a cylindrical cup with a flat-nosed punch is derived. The normal anisotropy is based on Hill's theory of an anisotropy sheet that is isotropic in its plane. Whiteley's equation for estimating the LDR, and Hill's upper limit value of LDR, are two special cases of the new equation. Compared with the published experimental work, good agreement between the calculation and the experiment is obtained. The new equation shows that the most important parameter for LDR is the normal anisotropy value R, the strain hardening exponent n has also some influence on the LDR, and clearly explains the real interaction between the normal anisotropy value R and the strain hardening exponent n on the LDR. It is different from other equations, which are functions of the normal anisotropy value R only.A new equation, incorporating the value of LDR derived as above and the critical drawing load Pc based on the maximum load principle for localization of plastic flow, for estimating the maximum drawing load Pc at a certain drawing ratio DR in cup-drawing with a flat-nosed punch is developed. This equation is simple and supplies an accurate estimation of the maximum drawing load Pd. A comparison between the calculation and the experiment shows that good agreement is also obtained.It is thereby possible to better understand and control the cup-drawing behavior of sheet metal.  相似文献   

14.
In this paper, a new method was proposed in order to enhance the limiting drawing ratio (LDR) of AA5754-O in the hydromechanical deep drawing process (HDD). In the proposed method, a shallow drawbead was added to the blank holder to increase LDR so as to provide strain hardening of a large region on the flange of the sheet material in addition to pre-bulging process which affects particularly only the initial stage but not the later ongoing process. So the LDR of the AA5754-O was increased from 2.65 to 2.787 by enlarging the region of strain hardening in the flange and partially reducing wrinkling tendency due to occurred tensile stresses using the convenient pressure and blank holder force profiles. The importance levels and their convenient values for height of drawbead, pre-bulge height and pressure, surface roughness of the punch were determined with analysis of variance (ANOVA) is a statistical method. ANOVA analysis illustrated that adding a shallow drawbead to the blank holder is the most effective factor between the investigated factors for the HDD process. While the effects of the pre-bulging pressure and pre-bulging height were determined as quite small, the surface roughness of the punch was found unimportant compared to the effect of the shallow drawbead. The highest LDR value was obtained with 1 mm drawbead height, 5 mm pre-bulging height, 10 MPa pre-bulging pressure and 2.8 μm surface roughness of the punch.  相似文献   

15.
Deep drawing is one of the most important processes for forming sheet metal parts.It is widely used for mass production of cup shapes in automobile,aerospace and packaging industries.Cup drawing,besides its importance as forming process,also serves as a basic test for the sheet metal formability.The effect of equipment and tooling parameters results in complex deformation mechanism.Existence of thickness variation in the formed part may cause stress concentration and may lead to acceleration of damage.Using TAGUCHI's signal-to-noise ratio,it is determined that the die shoulder radius has major influence followed by blank holder force and punch nose radius on the thickness distribution of the deep drawn cup of AA 6061 sheet.The optimum levels of the above three factors,for the most even wall thickness distribution,are found to be punch nose radius of 3 mm,die shoulder radius of 8 mm and blank holder force of 4 kN.  相似文献   

16.
Deep drawing of non-axisymmetric cross-section cups from thin sheets or metal foils has become increasingly important, especially for miniaturization of mechanical components. However, with a thin sheet thickness, conventional deep drawing processes are not able to offer reasonable drawing ratios due to early formations of localized wrinkling and fractures at cup corners. In this paper, a friction aided deep drawing process has been developed to increase the deep drawability of thin sheets and metal foils. Productions of square cups have been chosen to verify the current proposed process since the shape provides recognizable non-homogeneous deformation, which can then be compared to conventional processes. In the proposed process, a circular blank holder of a square hole is divided into eight identical segments of 45°. During the deep drawing process, four of the eight segments will move radially inward while the other four segments will move radially outwards cyclically under a pre-determined blank holding pressure. A finite element model of the technique was used to simulate virtual experiments to evaluate and optimize the controlling parameters that influence the cup height and forming process. Taguchi and Pareto ANOVA statistical methods were subsequently used to determine the optimum conditions for best cup height. The results have shown that the new technique is capable of producing deep square cups from soft aluminum sheet (Al-O) of 0.5 mm thickness with a high drawing ratio of 3.3. In addition, it was also observed that the radial displacement was the most significant parameter in influencing the cup height.  相似文献   

17.
The punch load and strain distribution of two deformed sheet steels, aluminum killed drawing quality steel (AKDQ Bare) and electro-galvanized drawing quality steel (AKDQ E.G.), are examined under the various process conditions including, die materials, punch speed, blank holding force, drawbead height and lubricant. The punch load and strain distribution ot Bare sheet steel forming is higher than that of E.G.sheet steel on the Kirkesite die set and are reversed on the GM 241 die set. The punch load and strain distribution on the Kirkesite die set is lower than those of the GM 241 die set. The changes of punch load and strain distribution ot the deformed cup for two sheet steels are affected by the frictional behavior of each sheet steel. It shows that the changes of frictional behavior having to be considered in the die design.  相似文献   

18.
分析了圆锥形零件拉深过程中 ,毛坯靠模时破裂失稳处的变形特点和受力情况。在拉伸失稳理论的基础上 ,推导出了圆锥形零件拉深成形时的极限承载能力 ,即破裂极限载荷的计算公式 ,并用实验对理论计算公式进行了分析验证。  相似文献   

19.
介绍了采用加大拉深模凸、凹模过渡圆角,增大凸、凹模间隙,降低表面粗糙度值及减少拉深过程压边力变化等措施,避免扬声器盆架拉深破裂,完成了模具的设计制造,生产的产品质量优良。  相似文献   

20.
采用载荷下降法研究了双相钢DP590在不同压边力下拉深成形的减薄率。采用BCS-50AR通用板材成形性试验机进行有无润滑条件的对比拉深试验,获得成形力-凸模位移关系曲线。试验结果发现,拉深件凸缘部位和凹模圆角处的润滑有利于拉深成形,而无润滑条件下的拉深容易破裂。拉深件凸缘部位增厚,凹模圆角处和筒壁部位均有不同程度的减薄。危险断面处的减薄率最大,破裂情况下的最小减薄率为28.6%,无破裂情况下的最大减薄率为19.3%,达到实际生产要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号