首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 72 毫秒
1.
为获得3,4-二硝基吡唑(DNP)/3,4-二硝基呋咱基氧化呋咱(DNTF)二元混合体系的相图,深入了解其低共熔物的熔融过程,采用差示扫描量热法(DSC)研究了不同比例的DNP/DNTF混合体系的液化及熔融过程,建立了液化温度Tl与组成x的T-x相图、熔融焓ΔH与组成x的H-x相图;研究了不同升温速率5,10,15,20℃·min-1,不同添加剂奥克托今(HMX)、高氯酸铵(AP)和硝基胍(NQ)对低共熔物熔融过程的影响;通过Kissinger方程和?atava-?esták方程计算得到了低共熔物熔融过程的动力学参数活化能Ea、指前因子A和最概然机理函数。结果表明,从T-x相图得到的DNP/DNTF低共熔物的质量百分比为70.38/29.62,低共熔温度为76.38℃;由H?x相图得到的低共熔物组成为70.57/29.43。随升温速率的升高,熔融反应的开始温度和峰温延迟;HMX和NQ的加入使低共熔物的熔点明显后移,AP的加入对熔点影响不大。DNP/DNTF低共熔物的熔融动力学参数Ea和A为19.13 kJ·mol-1和109.74 s-1,最概然机理函数的积分形式为:G(α)=(1-α)-1-1。  相似文献   

2.
刘艳  刘子如  阴翠梅 《含能材料》2004,12(Z1):227-230
测定了TNAZ与TNT、PETN、Tetryl、RDX和DNTF形成的二元混合体系熔融过程的DSC特征量,提出了建立T-X相图的DSC新方法.通过T-X和H-X相图研究了TNAZ与TNT、PETN、Tetryl、RDX和DNTF形成的二元低共熔体系,获得了各体系的低共熔物组成和低共熔点.  相似文献   

3.
寻求可替代TNT用于熔铸炸药的液相载体,在50~150 ℃范围内,用差示扫描量热仪研究了不同气氛(静态和N2)、不同加热速率( 5,10,20,30 ℃·min-1)下甲基硝基胍(MeNQ)基低共熔物的熔融过程。研究了RDX、HNS对MeNQ基低共熔物熔融过程的影响。结果表明,随着升温速率的增加,熔融反应开始时间和峰温有相应的延迟,而熔化速率增加; 添加RDX、HNS不能促进MeNQ基低共熔物的熔融; MeNQ基低共熔物的熔融过程符合1/2级反应动力学,升温速率为10 ℃·min-1时,MeNQ基低共熔物熔融反应的表观活化能为11.77 kJ·mol-1。  相似文献   

4.
钟圣  金波  彭汝芳 《含能材料》2023,31(10):970-978
为了获得3-氨基-2,4,6-三硝基苯甲醚(ANTA)/N-甲基-2,4,6-三硝基苯甲胺(TNA)低共熔物的热分解性能及其熔融结晶动力学参数,采用差示扫描量热法(DSC)研究了ANTA/TNA低共熔物的热分解性能,计算了热分解动力学参数;采用微热量热法研究了添加剂奥克托今(HMX)和黑索今(RDX)对ANTA/TNA低共熔物熔融结晶过程的影响,并分别利用?atava-?esták法和Avrami法分析了低共熔物非等温熔融和结晶行为。结果表明:低共熔物的热稳定性较好,热分解动力学参数与ANTA和TNA接近;低共熔物熔融过程符合一级反应动力学,升温速率对熔融动力学参数影响较大,添加剂能够一定程度减弱熔融动力学参数对升温速率的依赖程度;低共熔物的结晶过程随降温速率的增大而逐渐向低温区转移,其结晶速率随结晶度的增大而减小,在HMX介质中,结晶速率受结晶度的影响较小,在RDX中的结晶速率随结晶度的增大而增大。  相似文献   

5.
为了改善熔铸炸药载体3,4?二硝基呋咱基氧化呋咱(DNTF)感度高、熔点高的问题,使用高能钝感炸药1?甲基?2,4?二硝基咪唑(2,4?MDNI)制备了2,4?MDNI/DNTF低共熔物体系。通过差示扫描量热法(DSC)研究了不同比例2,4?MDNI/DNTF的熔融及液化过程,建立了T?x相图;研究了不同升温速率下2,4?MDNI、DNTF及2,4?MDNI/DNTF低共熔物的熔融和分解过程,分别使用Flynn?wall?ozawa方法、Doyle方法和Kissinger方法计算了2,4?MDNI、DNTF及其低共熔物的热反应动力学参数;对三种物质进行了XRD和SEM分析;通过感度测试研究了2,4?MDNI对DNTF的降感作用;使用EXPLO?5软件,计算了2,4?MDNI/DNTF低共熔物的爆轰性能。结果表明:2,4?MDNI/DNTF最低共熔物的物质的量组成为51:49,平均熔点为92.7℃;随着升温速率的升高,熔融及分解反应都将延迟,低共熔物热分解反应的活化能Ea、指前因子A分别为146.0 kJ·mol-1和4.09×1013;XRD测试中,2,4?MDNI/PETN低共熔物在2θ=18.60°处产生新的衍射峰;且其凝固表面微观形貌比DNTF明显改善。2,4?MDNI的撞击和摩擦感度均为0%,低共熔物的撞击和摩擦感度分别为64%和52%;2,4?MDNI/DNTF低共熔物的理论密度1.844 g·cm-3,计算爆速为8705 m·s-1。2,4?MDNI与DNTF制备成低共熔物后熔点理想,热稳定性良好,同时可以显著降低DNTF的感度而又保持其较高能量水平。  相似文献   

6.
首次研究并制作出2,4-二硝基甲苯、2,6-二硝基甲苯与乙醇或硫酸的二固-液三组分体系在不同温度下的相图。由相图得出,为析出尽量多的2,6-DNT,以乙醇作溶剂时温度高些有利,而以硫酸作溶剂时,温度低些有利。  相似文献   

7.
用差示扫描量热法绘制了环三次甲基三亚硝胺(TMNT)-N,N’-二甲基-N,N’-二苯基脲(C_2)和2,4,6-三硝基甲苯(TNT)-苦味酸(PA)的二元相图。它们的低共熔点分别是86.3℃和61.5℃。相对于低共熔点的组成分别为57,0重量百分数TMNT和68.4重量百分数TNT。  相似文献   

8.
分析了燃速催化剂和主要气体产物对燃速的高压差示扫描量热(PDSC)特征量关系方程参数的影响,结果表明,该方程的压强因子与压强指数线性相关,RDX-CMDB改性双基推进剂(R系列推进剂)的燃速催化剂影响燃热因子,主要分解气体产物相对量值比与“燃热因子”和“压强因子”有线性关系或有近线性关系.因此,该方程除了可以描述PDS...  相似文献   

9.
无机物对硝酸铵相转变的影响   总被引:1,自引:0,他引:1  
通过添加含量为0.99%的不同类型无机物对硝酸铵(AN)进行改性,采用差式扫描量热法(DSC)研究20余种无机物对改性AN相转变的影响。结果表明,所采用的钾盐均可有效防止AN发生Ⅳ-Ⅲ相转变,氧化物、Cu(NO3)2、(NH4)2SO4等无机物可有效防止AN发生Ⅲ-Ⅱ相转变,KCl与ZnO的复配物可同时防止AN发生Ⅳ-Ⅲ及Ⅲ-Ⅱ的相转变。无机物对AN相转变的影响是阴阳离子半径及匹配性、离子取代、形成固溶体、掺杂、溶解度、离子空间构型及电荷数等多种因素共同作用的结果。  相似文献   

10.
采用高压差示扫描量热仪(PDSC)测定航空燃料的主要成分正十二烷的氧化温度和氧化诱导期,采用两种不同方法求解Flynn-Wall-Ozawa方程得到正十二烷的氧化活化能Ea分别为154.37和154.56kJ·mol-1,指前因子lgA(min-1)分别为16.60和16.64,同时应用Arrhenius修正方程计算得到正十二烷的氧化活化能为139.59kJ·mol-1,从化学动力学的角度评价了正十二烷的热安定性。  相似文献   

11.
用高压差示扫描量热仪(PDSC)研究了一种RDX-CMDB推进剂在所选用燃速催化剂(没食子高铅、对氨基苯甲酸铜和炭黑)作用下的热分解,并对比了纳米和非纳米催化剂对其热分解的影响。结果表明,压力和不同复合组成的燃速催化剂对PDSC特征量和RDX的相对放热量有影响;在14 MPa压力范围内PDSC的特征量和压力可用一经验方程,通过二元回归与燃速关联。该方程能得到表征压力(压强)和放热速度对燃速的贡献程度的参数,能反映较高压力(8~14 MPa)下推进剂燃速的平台效应和不同复合组成的燃速催化剂的影响。  相似文献   

12.
钾盐消焰剂与TMETN和燃烧催化剂相互作用的实验研究   总被引:2,自引:2,他引:0  
利用高压差示扫描量热仪(PDSC)研究了不同钾盐与三羟甲基乙烷三硝酸酯(TMETN)和燃烧催化剂在热分解过程中的相互作用。热分析数据表明,钾盐与TMETN和燃烧催化剂Pb-Cu-CB之间存在着明显的相互作用。在三种钾盐中,K3AlF6对催化剂φ-Pb分解出活性组分PbO有破坏作用,这可能是导致推进剂平台效应消失的一个重要原因。  相似文献   

13.
孙笑  王娟  周新利 《含能材料》2014,22(6):774-779
为了解硝仿肼(HNF)的热分解动力学和热安全性,用真空安定性试验(VST)、差示扫描量热法(DSC)和热重法(TG)研究了HNF的热分解特性。根据HNF在升温速率为5,10,15,20℃·min-1时的DSC曲线的峰温和TG曲线的分解深度(α),分别用Kissinger法和Ozawa法计算了HNF热分解反应的表观活化能(Ek和Ea)和指前因子(Ak)、提出了描述HNF放热分解过程的动力学方程。计算了HNF热分解反应的热力学参数(活化自由能ΔG’,活化焓ΔH’和活化熵ΔS’)和HNF的热安全性参数(自发火温度Tbpo和自加速分解温度TSADT)。结果表明,HNF的放气量为0.41 m L·g-1,不超过2 m L·g-1的标准,显示HNF有良好的热安定性。HNF吸热熔融后的放热分解反应过程可分两个阶段。Ek=257.10 k J·mol-1,Ak=1.74×1033s-1,ΔG’=103.37 k J·mol-1、ΔH’=253.82 k J·mol-1,ΔS’=380.78 J·K-1·mol-1,Tbpo=400.28 K和TSADT=395.10 K。放热分解反应的动力学方程可描述为:对α=0.20~0.65的第一阶段dα/dt=kf(α)=Ae-ERT f(α)=5.14×1021×(1-α)[-ln(1-α)]12 exp(-1.81×104/T)对α=0.65~0.80的第二阶段dα/dt=kf(α)=Ae-ERT f(α)=3.30×1014×(1-α)[-ln(1-α)]-1exp(-1.33×104/T)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号