首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
1-甲基-4,5-二硝基咪唑包覆钝感CL-20研究   总被引:1,自引:0,他引:1  
利用1-甲基-4,5-二硝基咪唑(4,5-MDNI)在水中不同温度下的熔化和凝固结晶,通过水悬浮分散包覆工艺将4,5-MDNI包覆在六硝基六氮杂异伍兹烷(CL-20)颗粒的表面,制得外层为4,5-MDNI、内层为CL-20的双层混合炸药;采用扫描电镜观察了包覆前后炸药的显微结构、撞击感度测试表明:包覆后含量为6%的4,5-MDNI可使CL-20撞击感度(2.5 kg落锤)爆炸百分数由100%降低到8%;并通过DSC-TG技术研究了双层混合炸药的相容性。  相似文献   

2.
制备了1-甲基-4,5-二硝基咪唑(4,5-MDNI),培养了4,5-MDNI的单晶。用X射线衍射仪测定了单晶结构。结果表明,该晶体属于正交晶系,空间群为Pna2(1)/n。晶体学参数为:a=0.8412(2)nm,b=1.2646(3)nm,Dc=0.6563(1)nm,V=0.6982(3)nm3,Z=4,Dc=1.637 g.cm-3,μ=0.15 mm-1,F(000)=352。采用GJB772A-1997方法测试了4,5-MDNI的撞击感度和摩擦感度均为0,表明,4,5-MDNI对撞击和摩擦是不敏感的,接近TATB的撞击/摩擦不敏感性水平。  相似文献   

3.
硝基咪唑类含能化合物的合成研究进展   总被引:1,自引:1,他引:0  
综述了10种硝基咪唑类含能化合物的合成及性能,包括1,4-二硝基咪唑(1,4-DNI),2,4-二硝基咪唑(2,4-DNI),4,5-二硝基咪唑(4,5-DNI),2,4,5-三硝基咪唑(2,4,5-TNI),1-甲基-2,4-二硝基咪唑(2,4-MDNI),1-甲基-4,5-二硝基咪唑(4,5-MDNI),1-甲基-2,4,5-三硝基咪唑(MTNI),1-苦基-2,4-三硝基咪唑(2,4-PDNI),1-乙酸乙酯-2,4,5-三硝基咪唑(CTNII),1-苦基-2,4,5-三硝基咪唑(PTNI)。对高能钝感炸药1,4-DNI、2,4-DNI及MTNI的合成与性能进行了详细介绍并对路线中存在的问题进行了简要评述。同时提出了一条理论上可行的合成MTNI的新路线,即碘代-硝化法:以N-甲基咪唑为原料经碘化得到1-甲基-2,4,5-三碘基咪唑(MTII),然后再用超酸硝化得到目标物。  相似文献   

4.
以二氨基马来腈为原料,经过与三氟乙酸酐缩合、环化,与叠氮化纳再次缩合,合成得到了新型含能化合物5,5'-(2-三氟甲基)-咪唑-4,5-二(1H-四唑),收率61.3%;基于该化合物的酸性,设计合成了2种含能离子盐5,5'-(2-三氟甲基)-咪唑-4,5-二(1H-四唑)的羟胺盐和胍盐。利用红外光谱、核磁共振和元素分析对中间体及产物结构进行了表征。探讨了生成5,5'-(2-三氟甲基)-咪唑-4,5-二(1H-四唑)过程中影响四唑环化反应的关键因素,确定的最佳反应条件为:反应介质为水,n(2-三氟甲基-4,5-二氰基咪唑)∶n(Na N3)=1∶2.4,反应温度98℃,反应时间4 h。收率最高达86.3%。通过DSC-TG研究了5,5'-(2-三氟甲基)-咪唑-4,5-二(1H-四唑)的热分解性能,热分解曲线表明化合物直到223.65℃才开始分解,整个分解过程经历了两个主要的放热分解阶段和热失重阶段,最大放热峰温度为285.78℃,说明该化合物结构比较稳定。  相似文献   

5.
三种新型低熔点炸药的合成及表征   总被引:3,自引:0,他引:3  
以双氰胺、甲基咪唑和吡唑为原料,通过硝化、重排、再硝化等步骤合成了3种新型低熔点炸药:1-甲基3,5-二硝基-1,2,4-三唑(DNMT)、1-甲基-4,5-二硝基咪唑(4,5-MDNI)、3,4-二硝基吡唑(DNP). 优化了3种新型炸药的合成工艺,得到较优的工艺条件。采用熔点测定、红外光谱、元素分析和核磁共振氢谱对3种新型炸药结构进行了表征,利用DSC研究了其热分解性能,其熔点分别为:DNMT 95℃、4,5-MDNI 77℃、DNP 85℃. 结果表明,这3种新型炸药熔点低、热稳定性好。  相似文献   

6.
4,5-二硝基咪唑的制备   总被引:9,自引:7,他引:2       下载免费PDF全文
以咪唑为原料,混酸为硝化剂,通氮气条件下,采用正加法、二次加料的方式:先滴加混酸(发烟硫酸20%和硝酸98%),硝化硫酸咪唑盐;再在反应液中滴加硝酸98%反应,合成出4,5-二硝基咪唑。对第二次反应所用的硝酸(98%)量、反应温度和反应时间进行了试验,得到了较佳的实验条件:第二次硝酸滴加量为1.6 mol(咪唑为1 mol),反应温度为90~95℃,反应时间为5~5.5 h。  相似文献   

7.
1-甲基-3,4-二硝基吡唑合成与表征   总被引:1,自引:1,他引:0  
以3-硝基吡唑为原料,通过硝化、甲基化得到1-甲基-3,4-二硝基吡唑(MDNP),优化了合成工艺,得到较优的甲基化反应的工艺条件:反应温度90℃;反应时间6.5h;3,4-二硝基吡唑、碳酸二甲酯与无水碳酸钾的摩尔比为1∶10.5∶1.5,目标产物总得率55.6%。采用熔点测定、元素分析、红外光谱、核磁共振等对目标产物进行了结构表征,利用DSC研究了其热分解性能。结果表明,热分解温度为298℃,熔点为20℃,在常温下为液体单质炸药,热稳定性好。  相似文献   

8.
4-氨基-5-硝基-1,2,3-三唑(ANTZ)合成与表征   总被引:1,自引:1,他引:0  
以丙二酸单乙酯为原料,经脱羧氧化硝化得到二硝基乙酸乙酯,二硝基乙酸乙酯、叠氮化钠、乙醛缩合环化获得关键中间体4-甲基-5-硝基-1,2,3-三唑,再经氧化、酯化、酰化、霍夫曼重排得到目标产物4-氨基-5-硝基-1,2,3-三唑(ANTZ).利用元素分析、核磁共振、红外光谱等鉴定中间体及最终产物的结构;初步探讨了缩合环化反应历程,研究了影响关环反应的主要条件,确定了氧化反应的最佳反应条件为反应时间90 min,反应温度100 ℃,K2CO3和4-甲基-5-硝基-1,2,3-三唑的最佳物料比为1:2.  相似文献   

9.
徐奎  陆明 《含能材料》2015,23(8):716-719
以乙二醛,甲酰胺和盐酸胍等为原料,通过两阶段硝化反应,合成了4,8-二硝基八氢化二咪唑[4,5-b:4',5'-e]哌嗪-2,6-(1H,3H)-N,N'-二亚硝胺(TNIP),采用IR、NMR、MS等表征了中间体和产物的结构。同时探究了时间、温度、醋酐与硝酸体积比等因素对两阶段硝化过程的影响,确定了硝化过程较佳的工艺条件为第一阶段醋酸酐与硝酸体积比为1.2,反应时间为2 h,反应温度为45℃,第二阶段醋酸酐与硝酸体积比为3,反应时间4 h,反应温度50℃,硝化总产率由23.3%提高至35.1%。采用差示扫描量热法和热重分析研究了TNIP的热性能,其分解温度为290℃,说明TNIP具有良好的热稳定性。实测TNIP的撞击感度(H50)为108.1 cm,优于RDX(38 cm)和HM X(30~32 cm)。  相似文献   

10.
张盼  杨峰  陆明 《含能材料》2021,29(8):700-704
以4,5-二氰基-2-氨基咪唑为原料,经过肟化,氯代,重氮化,硝化三步反应生成4,5-双(氯二硝基甲基)-2-重氮咪唑,采用X-射线单晶衍射分析、傅里叶变换红外光谱(FT-IR)、核磁共振谱(1H NMR、13C NMR)高分辨质谱(HRMS)对其结构进行表征;通过差示扫描量热仪和热重分析仪研究其热性能;通过Gaussian09和EXPLO5 v6.01对其结构优化和性能预估.结果表明,4,5-双(氯二硝基甲基)-2-重氮咪唑的晶体属于三斜晶系,为P1空间群,晶胞参数为a=6.6196(10)?,b=8.1685(13)?,c=13.0272(19)?,V=666.96(18)?3,α=100.166(4)°,β=102.560(4)°,γ=97.153(5)°,Z=2,F(000)=368;Dc=1.848 g·cm-3.其热分解温度为122.14℃,预估爆速为8574 m·s-1,预估爆压为32.8 GPa,按BAM标准方法测试感度,其撞击感度为4 J,摩擦感度为100 N.  相似文献   

11.
1-甲基-4,5-二硝基咪唑的合成及表征   总被引:7,自引:6,他引:1       下载免费PDF全文
咪唑为原料,两步硝化得4,5-二硝基咪唑,再在DMF中与硫酸二甲酯反应得目标化合物1.甲基-4,5.二硝基咪唑,采用红外光谱、元素分析、质谱和核磁共振氢谱对其进行了表征。优化了合成工艺,讨论了4,5-二硝基咪唑的硝化机理。实验测得目标产物的总得率为62%,熔点为77℃,最佳反应条件为:温度45~50℃,时间4h,4,5-二硝基咪唑和硫酸二甲酯的摩尔比1:6。在25℃,pH值由4,5-二硝基咪唑(0.63mol·L^-1的丙酮溶液)的3.74升到1.甲基-4,5.二硝基咪唑(0.63mol·L^-1的丙酮溶液)的6.77,酸性显著降低。  相似文献   

12.
张君君  申程  王鹏程  陆明 《含能材料》2017,25(5):391-395
以六氢咪唑[4,5-d]咪唑-2(1H)-亚胺为原料,通过三个阶段硝化反应合成了一种新型多环氮杂环含能化合物:N~(-1),4,6-三硝基六氢咪唑[4,5-d]咪唑-2(1H)-亚硝胺(TNINA),总收率55%。采用红外光谱(IR)、核磁共振(NMR)、质谱(MS)对目标产物以及中间体进行了表征,同时研究了时间、温度、乙酸酐与硝酸体积比等因素对第三阶段硝化反应的影响。利用热重分析(TG)和差示扫描量热仪(DSC)研究了TNINA的热性能,DSC结果显示其热分解温度为214.4℃,且放热过程瞬间完成。用Monte-Carlo方法估算TNINA的理论密度为1.91 g·cm~(-3),真密度仪测得其密度为1.89 g·cm~(-3)。用Kamlet-Jacobs方程估算出其爆热为5513.26 kJ·kg~(-1),爆速为8.836 km·s~(-1),爆压为35.80 GPa,撞击感度H50的计算值为41 cm,测试值为53 cm。理论计算结果与实验数据说明TNINA与RDX相比拥有更优异的爆轰性能与更低的感度。  相似文献   

13.
以3,5-二氯哒嗪为原料,经过取代、氧化、硝化、氨解四步反应分别合成3,5-二氨基-4,6-二硝基氧化哒嗪(DADNPO)和未见文献报道的3,5-二氨基-4-硝基氧化哒嗪(DANPO),并采用红外光谱、1H NMR、13C NMR及元素分析对中间体及产物结构进行了表征;探究了硝化反应条件对硝化产物及收率的影响,确定制备3,5-二甲氧基-4,6-二硝基氧化哒嗪较佳条件为:硝硫混酸作为硝化试剂,反应温度50~55℃,反应时间为15 h。利用Gaussian 09程序和Kamlet-Jacobs方程计算DADNPO和DANPO的爆速分别为8.486 km·s^-1和7.224 km·s^-1,爆压分别为30.2 GPa和23.09 GPa。采用差示扫描量热(DSC)研究了这两种化合物的热性能,结果表明,DADNPO、DANPO放热分解峰温分别为244.4°C和325.2°C,DANPO的热稳定性更好。  相似文献   

14.
成健  姚其正  董岩  刘祖亮 《含能材料》2009,17(5):534-536
以2,6-二乙酰氨基吡啶-1-氧化物(DAPO)为原料,在Ⅳ,Ⅳ,Ⅳ-三甲基-N-丙磺酸基-硫酸氢铵(TMPSHSO4)催化条件下,采用N2O5/有机溶剂硝化2,6-二乙酰氨基毗啶制得2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)。考察了在TMPSHSO4催化条件下反应溶剂、温度和时间对ANPyO产率的影响,结果表明最佳反应条件为:反应溶剂为CH3NO2,反应温度为60℃,反应时间为5h,ANPyO产率为92.5%。用^1HNMR,IR和MS对ANPyO的结构进行了表征。  相似文献   

15.
黄晓川  郭涛  王子俊  刘敏  秦明娜  邱少君 《含能材料》2016,24(12):1178-1182
以1,1'-二氨基-2,2'-二硝基乙烯(FOX-7)为原料,经浓硝酸硝化及有机溶剂萃取得到高氧平衡化合物——四硝基乙酰胺酸(TNAA)。对比了四种有机萃取溶剂(二氯甲烷、氯仿、四氯化碳和乙酸乙酯)所得TNAA的收率及纯度。采用DSC和TG研究了TNAA的热行为。结果表明,确定二氯甲烷为最佳萃取溶剂,其收率为95.0%,纯度为99.4%。升温速率10 K·min~(-1)下,TNAA熔化吸热峰的初始温度、峰值温度分别为84.8℃和87.8℃,熔融焓为61.7 J·g~(-1);分解放热峰的初始温度、峰值温度分别为117.7℃和131.4℃,分解热为934.8 J·g~(-1)。采用Kissinger方法得到的TNAA的热分解反应活化能E为124.7 k J·mol~(-1),指前因子A为10~(16.1)s~(-1)。自加速分解温度T_(SADT)为102.3℃、热爆炸临界温度T_b为112.2℃、T=Tp时TNAA热分解反应的热力学参数ΔH~≠、ΔS~≠以及ΔG~≠,分别为121.5 k J·mol~(-1)、61.2 J·K~(-1)·mol~(-1)和98.0 k J·mol~(-1)。  相似文献   

16.
以4,6-二羟基嘧啶为原料,经过硝化-水解、加成得到4,4,4-三硝基丁酸(TNB),以1,3-二氯丙醇为原料,经叠氮化制备得到1,3-二叠氮基-2-丙醇(DAG),而后TNB和DAG经酯化反应制备得到新型含能增塑剂4,4,4-三硝基丁酸-2-叠氮基-1-叠氮甲基乙酯(DPTB)。通过红外、核磁、元素分析对DPTB的结构进行了表征。合成中,用二环己基碳二亚胺(DCC)和二甲氨基吡啶对甲苯磺酸盐(DPTS)催化酯化法代替传统方法,考察了物料比、反应温度、反应时间和溶剂用量对酯化反应的影响。用热重(TG)和差示扫描量热(DSC)法研究了DPTB的热分解性能。结果表明,DCC/DPTS催化酯化法代替传统方法,使DPTB的酯化收率由17.9%提高到44.9%。在215℃和230℃,DPTB的DSC曲线有两个分解放热峰。它的TG曲线可分为两个阶段:第一阶段,从147℃到220℃,伴随76.68%的质量损失,第二阶段,从220℃到351℃,伴随15.23%的质量损失,从分解反应开始到结束的总质量损失为91.19%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号