首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
用Gleeble3500热模拟试验机对挤压态6082铝合金进行等温恒应变率压缩试验,变形温度为350~500℃,应变率为0.01~7.5 s-1,获得不同变形条件下的真应力-真应变曲线,建立本构方程和热加工图,并对不同条件下显微组织进行分析.结果表明:挤压态6082铝合金为正应变率敏感材料,该材料热变形软化机制主要为动态回复,热变形失稳主要是析出相聚集导致局部流变失稳,计算得到该合金的热变形激活能为175.17 kJ/mol,安全加工区主要分布在375~500℃,0.001~0.5 s-1,随应变增加安全加工区变化很小.  相似文献   

2.
为建立满足7055铝合金高速切削有限元模拟的本构模型,基于准静态拉伸实验和分离式霍普金森压杆(SHPB)动态冲击实验,采用变量分离和非线性拟合得出7055铝合金的初始Johnson-Cook(J-C)本构方程;结合高速铣削实验,基于Oxley切削模型的反求法对初始本构方程参数进行修正,建立7055航空用高强铝合金高温、大应变、高应变率材料本构模型。利用ABAQUS软件和获得的J-C本构方程建立7055高速切削有限元模型。有限元模拟的主切削力与实验结果相差较小,表明所建立的J-C本构方程能较好地应用于高速切削模拟。  相似文献   

3.
为研究6061铝合金在高应变率下的力学性能,利用分离式霍普金森压杆(SHPB)装置进行87组应变率为(2 000~3 400)s-1的动态压缩试验,得到应力-应变曲线。提取动态试验中试件的流动应力和塑性应变的最大值,揭示峰值应力-应变与应变率间的相关性,并根据6061铝合金的特性对Johnson-Cook本构模型进行修正。结果表明:在高应变率下,6061铝合金为应变率较敏感材料,应变率和峰值应力、应变率和峰值应变间的线性相关性较强,且修正后的JohnsonCook本构模型可以较准确地描述6061铝合金的力学性能。  相似文献   

4.
为了研究聚碳酸酯在低温条件下的力学行为,在冲击拉伸试验装置上对聚碳酸酯板进行了不同环境温度下的高应变率单向拉伸实验,获得了-60℃、-20℃和室温下应变率为360 s-1、800 s-1和1 700 s-1的拉伸应力应变曲线。试验结果表明,在实施的温度范围内,随着温度的升高,聚碳酸酯的屈服应力和失稳应变都有不同程度的减小;在同一实验温度下,随着应变率的增加,屈服应力和失稳应变均增大,呈现高速韧性的特征。  相似文献   

5.
为探究7A52铝合金的流动应力变化规律,在材料拉伸试验数据基础上,建立Johnson-Cook本构模型。利用有限元软件AQAQUS,模拟7A52铝合金在温度为25~400℃、应变率为0.1~10 000 s~(-1)的准静态和动态拉伸试验。结果表明:温度和应变率都会影响7A52铝合金的流动应力,但对温度的敏感性较大,对应变率敏感性较小;流动应力随着温度的升高而减小;流动应力随着应变率的增加而增大,尤其在应变率高于1 000 s~(-1)时影响更加明显。所建有限元模型结果与试验结果吻合较好,证明该Johnson-Cook本构模型能够在一定温度和应变率范围内预测7A52铝合金的流动应力。  相似文献   

6.
对7A52/7055铝合金层状复合材料进行准静态压缩试验以及不同温度、不同应变速率条件下的冲击压缩试验,并分析其应力-应变、能量吸收和本构模型。结果表明:当应变率为(1 000~3 000)s-1时,7A52/7055铝合金层状复合材料在高应变率下敏感性较高,其流动应力随应变率的增大而升高,在高温条件下材料的流动应力变化不明显;在350℃时能量吸收效果明显,当7A52和7055层厚比为1∶2时,能量吸收效果最佳;基于MATLAB curvefitting拟合出的Johnson-Cook模型能较好地预测试验中铝合金层状复合材料的流动应力。  相似文献   

7.
利用Gleeble3500热模拟试验机进行材料的高速(应变速率大于1 s-1)试验时,由于采用的stroke模式导致速率偏离目标速率以及塑性功转化热在短时间内散发不出去,使试样温度偏离设置温度、材料变形偏离目标变形条件。为构建材料真实变形条件下的本构方程,通过分析速率及温升与应变之间的关系,在传统本构方程的基础上构建了带有速率修正和温度弹跳的本构方程模型。结果表明,修正后的本构方程具有较高的预测精度。  相似文献   

8.
LZ92镁锂合金在210~300℃、0.001~1 s~(-1)条件下进行等温压缩试验,分析合金流变行为,根据应力峰值建立合金的热变形本构方程。结果表明:应力峰值随变形温度升高而减小,随应变率增大而增大。该本构方程能较好预测合金的应力峰值,变形激活能Q为108 291.51 J/mol。试验验证,该本构方程预测的应力峰值精度较高,平均相对误差为8.55%,相关系数为0.98。  相似文献   

9.
为指导06Cr18Ni11Ti奥氏体不锈钢塑性加工工艺参数制定及构建数值模型所需材料数据,利用热模拟试验机进行单向等温压缩试验,温度为900~1 200℃,应变速率为0.01~1.00 s-1,变形量为60%。根据真应力-真应变曲线对06Cr18Ni11Ti奥氏体不锈钢热变形机制进行分析,结合线性拟合建立流变应力本构方程和临界应变模型。结果表明:在较高变形温度和较低应变速率下,06Cr18Ni11Ti不锈钢的主要软化机制为动态再结晶,真应力随温度升高而降低,随应变速率减小而降低;为验证流变应力本构方程的准确度,比对预测结果与试验结果,相对误差在10%以内,得到06Cr18Ni11Ti奥氏体不锈钢的热变形激活能为440.61 kJ/mol。  相似文献   

10.
为研究高铜超纯铁素体不锈钢(21Cr-1.5Cu)热加工过程中变形温度和应变率对热变形行为影响,在变形温度为950、1000、1050、1100、1150、1200℃,应变率为0.01、0.1、1、10 s-1条件下对其进行热变形试验.结果表明:试验钢热变形方程为ε.=5.81×1013sinh(ασ)4.6825exp(-323000/RT).热加工图中流变失稳区主要有3处:变形温度为950~1060℃,应变率为0.15~1.1 s-1;变形温度为1050~1080℃,应变率为3~10 s-1;变形温度为1130~1180℃,应变率为1~10 s-1.分析可知,变形温度为1075~1200℃,变形率为0.01~0.1 s-1最适合热加工,能耗率达40%以上,且应变量增加,失稳区增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号