首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 46 毫秒
1.
The behavior of a RF-excited waveguide CO2 laser in the pulse regime is studied theoretically. The output pulse evolution is studied by applying three types of pulses namely the square, sine and the triangular ones as the excitation pulses. The frequency dependence behavior of the output pulse is also presented.  相似文献   

2.
The experimental study of the laser beam parameters of the pulse repetitive RF-excited diffusion cooled waveguide CO2 laser are presented. The measurements are carried out for the pumping pulse duration of 100 μs and pulse repetitive rates 5 - 14 kHz. The average power density delivered to the active medium is 76 W/cm^3. Three types of the pulses, namely the square, the sine and the triangular ones have been applied at the input as pumping pulses and their effects on the output power and the delay time have been studied. The output power of the radiation versus input power, pressure of the laser gas mixture and modulation frequency has been investigated. The results indicate that the output peak power for the three types of pulses increases with increase of the pressure of the laser gas mixture and with the input power where as it decreases with the repetition frequency. The delay time of the output pulse decreases with the increase of the repetition frequency and input power, where as it increases with the increase of the pressure of the laser gas mixture. The behavior of the output power and the delay time with duty cycle for square pulse has also been investigated.  相似文献   

3.
The influence of different technological parameter on material remove rate and surface quality of ZrO2 ceramics is studied using the cutting machining method of electroplate diamond wire saw with ultrasonic vibration. Experimental results show that, compared with the same experiment condition without ultrasonic vibration, this cutting method has the advantages of high material remove rate, good surface quality, little brokenness and so on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号