首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 109 毫秒
1.
采用磁力搅拌-脉冲电沉积法在45钢表面制备Ni-P-SiC镀层。采用正交试验法优化Ni-P-SiC镀层的制备工艺,利用扫描电镜(SEM)和磨损试验机进行Ni-P-SiC镀层表面形貌及耐磨性能分析。结果表明,磁力搅拌-脉冲电沉积复合制备Ni-P-SiC镀层的最佳工艺为:磁力搅拌速率200 r/min,脉冲占空比2∶1,脉冲电流密度4 A/dm2,SiC粒子的质量浓度6 g/L。1号试样的磨损较严重,磨损量为5.1 mg;6号试样的磨损则较轻,磨损量为2.7 mg。  相似文献   

2.
采用磁力搅拌-脉冲电沉积法在45钢表面制备Ni-P-SiC镀层。采用正交试验法优化Ni-P-SiC镀层的制备工艺,利用扫描电镜(SEM)和磨损试验机进行Ni-P-SiC镀层表面形貌及耐磨性能分析。结果表明,磁力搅拌-脉冲电沉积复合制备Ni-P-SiC镀层的最佳工艺为:磁力搅拌速率200r/min,脉冲占空比2∶1,脉冲电流密度4A/dm2,SiC粒子的质量浓度6g/L。1号试样的磨损较严重,磨损量为5.1mg;6号试样的磨损则较轻,磨损量为2.7mg。  相似文献   

3.
用磁力搅拌-化学沉积的方法,在45钢表面沉积Ni-P-SiC镀层。研究了SiC微粒添加量、搅拌速率以及镀液温度等对镀层硬度和表面形貌的影响,借助扫描电子显微镜(SEM)对镀层进行观察。结果表明:当SiC的质量浓度为10 g/L时,镀层显微硬度最大(615.2HV);当磁力搅拌速率为300 r/min时,镀层的显微硬度最大(632.8HV)。磁力搅拌-化学沉积Ni-P-SiC镀层的最佳工艺参数为:SiC添加的质量浓度10 g/L,搅拌速率300 r/min,温度85℃。  相似文献   

4.
为改善抽油泵泵筒的综合性能,采用喷射搅拌-化学沉积工艺,在抽油泵泵筒内表面镀覆Ni-P-SiC镀层。Ni-PSiC镀层的表面微观形貌、硬度、组成成分及其摩擦磨损性能分别用原子力显微镜(AFM)、显微硬度计、XRD衍射仪以及磨损试验机等进行测试研究。结果表明:喷射搅拌-化学沉积制备的Ni-P-SiC镀层主要由Ni和SiC两相构成;当镀液添加SiC的质量浓度为8 g/L时,喷射搅拌-化学沉积Ni-P-SiC镀层表面较为细密、光整,其显微硬度的最大值为902.4HV。SEM分析表明,该Ni-P-SiC镀层的磨痕较浅,且表面较光滑。  相似文献   

5.
SiC粒度对磁力搅拌-化学沉积Ni-P-SiC镀层的影响   总被引:1,自引:0,他引:1  
用磁力搅拌-化学沉积方法在45钢表面制备Ni-P-SiC镀层,研究镀液中SiC颗粒粒度对镀层表面形貌、显微硬度及耐磨性能的影响。结果表明:随着SiC颗粒的粒度逐渐减小,镀层的平整度和致密性增加,SiC颗粒团聚现象越来越不明显;当SiC粒度为0.2 μm,Ni-P-SiC镀层表面均匀分散着微小的SiC颗粒,镀层平整、致密,平均显微硬度为853.4HV;当SiC粒度为1,2 μm,最大硬度差分别为25.8HV和40.5HV。随着磨损时间的增加,含有SiC粒度0.2 μm的Ni-P-SiC镀层的磨损量缓慢增加,而SiC粒度为2,1 μm的Ni-P-SiC镀层的磨损量急剧增加。  相似文献   

6.
采用机械搅拌-电沉积方法,在45钢基体表面制备Cu-SiC纳米复合镀层。利用扫描电镜和摩擦磨损试验机研究机械搅拌速率、电流密度、SiC粒子质量浓度以及pH值等因素对Cu-SiC纳米复合镀层耐磨性能的影响及规律。结果表明,Cu-SiC纳米复合镀层的最佳制备工艺参数为:搅拌速率300 r/min,阴极电流密度4 A/dm2,镀液中SiC粒子的浓度4 g/L,pH值3.5~4.5。  相似文献   

7.
采用电沉积方法在汽车传动部件用40Cr钢表面制备Ni-nanoSiC复合镀层。以复合镀层中SiC质量分数和复合镀层的硬度作为指标,通过正交实验优化施镀工艺参数,得到最佳施镀工艺参数:搅拌速度为300 r/min、镀液中SiC颗粒质量浓度为20 g/L、温度为50℃、阴极电流密度为14 A/dm2。结果表明:采用最佳施镀工艺参数制备的Ni-SiC复合镀层表面平整、组织致密,其磨损机制为轻度磨粒磨损,平均摩擦因数约为0.45,低于40Cr钢的0.6;磨损量约为6.27 mg,相比40Cr钢约降低25.6%。Ni-nanoSiC复合镀层能够提供有效的防护,改善和提高40Cr钢的抗磨损性能。  相似文献   

8.
用超声波-机械搅拌-电沉积法制备Cu-SiC复合镀层。利用正交试验对Cu-SiC复合镀层的制备工艺进行优化,利用扫描电镜(SEM)、能谱仪(EDS)以及磨损试验机对Cu-SiC镀层的表面形貌、组分及耐磨性能进行分析。结果表明:采用超声波-机械搅拌-电沉积法,可获得表面致密、晶粒细小的Cu-SiC复合镀层,且复合镀液稳定,没有出现自分解现象;最佳工艺为超声波功率200 W,机械搅拌速率300 r/min,SiC粒子浓度8 g/L,电流密度5 A/dm2。该工艺制备的Cu-SiC复合镀层耐磨性能较好。  相似文献   

9.
采用超声波和机械搅拌相结合方法,在45钢表面化学镀Ni-P-SiC层。利用扫描电镜对Ni-P-SiC镀层进行表面形貌分析,结果表明:采用机械搅拌-化学镀,当搅拌速率为300 r/min,Ni-P-SiC镀层表面变得较为光滑、平整,胞状组织也细小,表面致密;采用超声波搅拌-化学镀,当超声波功率为200 W,SiC颗粒在镀层中的分散性较好,镀层较致密;采用超声波-机械搅拌-化学镀,施加超声波功率为200 W和机械搅拌速率为300 r/min的复合搅拌作用,可获得表面光滑、平整,且孔隙率和胞状组织细小的Ni-P-SiC镀层。  相似文献   

10.
利用电沉积技术在碳钢表面制备纳米晶钴镍合金镀层,并辅助超声波分散加机械搅拌,获得具有良好减摩性能的纳米晶、低微摩擦系数的钴镍合金镀层材料。研究了电流密度、温度、pH值等工 艺参数对合金镀层成分及耐磨性的影响。利用扫描电镜、场发射扫描电镜、X射线衍射仪分析了镀层表面的显微组织、相结构及成分含量,通过UNMT1微纳米材料力学综合测试系统考察镀层的微磨损性能。结果表明,获得的合金镀层组织细密、结构均匀,工艺参数对合金层的微摩擦系数影响较大,在最佳工艺参数电流密度1.5 A/dm2、温度50 ℃、pH值为4.0时合金镀层的平均摩擦系数最小为0.18,合金具有较好的耐微摩擦磨损性能。  相似文献   

11.
搅拌方法对Ni/TiN复合镀层微观结构和耐磨性能的影响   总被引:1,自引:1,他引:0  
采用机械搅拌-电沉积和超声搅拌-电沉积复合方法,在20钢基体表面制备Ni/TiN复合镀层。利用扫描电镜(SEM)和摩擦磨损试验机对复合镀层进行研究。结果表明:当机械搅拌速率为400 r/mim时,Ni/TiN复合镀层的TiN粒子复合量的质量分数为9.8%,显微硬度为871HV;当超声波功率为300 W时,Ni/TiN复合镀层的TiN粒子复合量的质量分数为10.9%,显微硬度为926HV。在机械搅拌-电沉积制得的Ni/TiN复合镀层中,表面颗粒的粒径在3μm左右,而超声搅拌-电沉积制备镀层,表面颗粒的平均粒径为1μm。采用超声搅拌-电沉积制备Ni/TiN复合镀层,耐磨性能优于机械搅拌-电沉积制备的镀层。  相似文献   

12.
为提高Ni-Cu-P合金镀层的耐腐蚀性,采用正交试验法对NdFeB磁体表面化学镀Ni-Cu-P合金的镀液配方和施镀工艺进行优化,获得NdFeB磁体表面化学镀Ni-Cu-P合金的最佳成分配方为:硫酸镍25g/L,硫酸铜0.4g/L,次亚磷酸钠35g/L,络合剂48g/L,缓冲剂50g/L,pH值9。分析镀液pH值和镀液中CuSO4·5H2O浓度对沉积速度和镀层成分的影响。结果表明:随镀液pH值增加,沉积速度提高,镀层中Cu和Ni含量略升高,P含量逐渐降低;随镀液中CuSO4·5H2O浓度的增加,镀层中Cu含量升高,P含量先升高后降低,Ni含量降低。  相似文献   

13.
采用脉冲电沉积在A3钢表面制备Cu-SiC镀层。采用BP网络模型对脉冲电沉积Cu-SiC镀层的镀速进行预测研究。结果表明:本BP模型为3×9×1型神经网络模型,预测值与试验值曲线吻合较好;其相对误差较小,最大误差为2.7%,其相关系数为0.999,能较好地预测脉冲电沉积Cu-SiC镀层的镀速。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号