首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
5-氨基四唑硝仿盐的理论计算   总被引:2,自引:2,他引:0  
采用量子化学方法研究了5-氨基四唑硝仿盐的结构和性能,计算了5-氨基四唑硝仿盐的密度、生成热、爆速、爆压等,其预测密度为1.93 g·cm-3,估算爆速和爆压分别为9.47 km·s-1和38.82 GPa,爆轰性能高于TNT, RDX和HMX。   相似文献   

2.
以3?氨基?4(?叔丁基?NNO?氧化偶氮基)呋咱(ABAo F)为原料,经重氮化开环、肟化、氧化、氨化和硝化环化五步反应得到目标化合物1?羟基?1,2,3?三唑并[4,5?e]?5,7?二氧化?1,2,3,4?四嗪(HTTDO),总收率24.1%,采用红外光谱、核磁共振、质谱及元素分析对中间体及产物的结构进行了表征;探讨了氨化及硝化环化的反应机理;培养了HTTDO·4.5H2O的单晶,X射线衍射分析表明,其为正斜方晶系,空间群为Pna2(1),晶体密度为1.659 g·cm~(-3);利用Gaussian 09程序和Kamlet?Jacobs方程计算HTTDO理论密度为1.88 g·cm~(-3),爆速为9393 m·s-1,爆压为41.9 GPa,爆热为8010 J·g~(-1);采用差示扫描量热(DSC)研究了HTTDO的热性能:其在热分解过程中,放热剧烈,峰温最高达194.5℃。  相似文献   

3.
以4,6-二硝基苯并连三唑-1-氧化物(DNBTO)为原料,通过复分解、取代、硝化-水解反应设计并合成了未见文献报道的新化合物4,6-二硝基苯并连三唑-3-偕二硝甲基-1-氧化物(TNBTO);采用红外光谱、1H NMR、13C NMR及元素分析等表征了中间体及最终产物的结构;理论计算了TN BTO的密度和生成焓,利用Kamlet-Jacobs方程计算了TN BTO的爆轰性能,其密度为1.81 g·cm-3,爆速为8161.2 m·s-1,爆压为30.2 GPa;利用薄层色谱法跟踪验证了TN BTO的热稳定性,发现TN BTO常温下易分解.  相似文献   

4.
为了研究熔铸炸药3,3'-联(1,2,4-噁二唑)-5,5'-二甲硝酸酯(BOM)的性能,采用熔铸工艺制备了熔铸试样,测试了熔铸试样的爆速;通过热分解和恒温试验研究了BOM的熔铸工艺热安全性,采用宏观凝固成型和微观凝固结晶试验研究了BOM的凝固性能,采用抗压和抗拉试验研究了BOM铸件的力学性能;通过爆轰性能计算研究了BOM/HMX/Al熔铸炸药体系的爆速和爆热性能.结果表明,BOM自然凝固成型密度为1.726 g·cm-3,实测爆速为7679 m·s-1.BOM分解峰温为213.8℃,计算热爆炸临界温度为190.7℃,恒温加热未见变色发烟,显示良好的熔铸工艺热安全性.BOM凝固缺陷集中于铸件顶部补缩区,自然凝固体积收缩率15.7%,成型密度为理论密度的94.7%,凝固成型性能良好.铸件抗压强度6.21 MPa,抗拉强度1.89 MPa.在BOM/HMX/Al熔铸炸药体系中,爆速随着Al含量的增加线性降低.Al含量低于24%时,爆热随着Al含量的增加逐步提高.Al含量大于24%时,爆热与配方中BOM和HMX的配比相关,可调节体系中BOM与HMX的配比以满足配方最佳的铝氧比.  相似文献   

5.
以硝基胍和甲醛为原料,经缩合反应、硝化反应和肼解反应得到总收率为63.69%的3,5-二硝氨基-1,2,4-三唑肼盐(HDNAT),并对其进行了表征了结构。测试了HDNAT的部分物化、爆轰性能。结果为:密度1.89 g·cm-3,熔点194~196℃,摩擦感度92%,撞击感度100%,H5026.8cm,爆速9000 m·s-1(ρ=1.80 g·cm-3).采用VLM method计算其爆压为36.0 GPa。  相似文献   

6.
1-氨基-3-甲基-1,2,3-三唑硝酸盐的合成与表征   总被引:1,自引:1,他引:0  
以乙二醛和水合肼为起始原料,经加成-消除、环化甲基化、置换反应得到1-氨基-3-甲基-1,2,3-三唑硝酸盐(1-AMTN),总收率71.8%(以乙二醛计),采用核磁(NMR)、红外(IR)、质谱(MS)和元素分析对产物进行了表征。预测了1-AMTN的性能:密度为1.63 g.cm-3,生成焓84 kJ.mol-1,爆速8115 m.s-1。研究了溶剂、温度、物料比对产物得率的影响,确定了环化甲基化的最佳反应条件:溶剂为乙腈,反应温度20℃,乙二腙与碘甲烷的物料比1∶5,环化甲基化收率为86.7%。对活性二氧化锰进行了回收利用并对其机理进行了探讨。  相似文献   

7.
为了得到钝感的1,3,4-噁二唑类含能化合物,以丁二酸二甲酯和溴化氰为起始原料,通过肼解、环化、硝化反应合成了1,2-双(5,5'-二硝胺基-1,3,4-噁二唑-2-)乙烷(BNOE),总收率为49.93%。采用元素分析、傅里叶变化红外光谱和核磁对其结构进行了表征。用热重-差示扫量热仪研究了其热稳定性,依据GJB5891-2006方法测试了感度,采用密度瓶法测试了密度,用量子化学软件Gaussian 09计算了固相生成焓,采用EXPLO 5 V6.02程序预估了其爆轰性能。结果表明,BNOE的起始分解温度为202.2℃,热分解峰温为208.6℃,撞击感度为8.6 J,摩擦感度为88%,静电感度为108.1 mJ,实测密度为1.714 g·cm-3,固相生成焓为48.25 kJ·mol~(-1),计算爆压为22.6 GPa,计算爆速为7663 m·s~(-1)。采用Gaussian 09分析了5-甲基-2-氨基-1,3,4-噁二唑(NAOz)的环化反应机理,认为其反应分为肼解反应和成环反应两个阶段。  相似文献   

8.
苗爽  张雷  王涛  王玉玲  杭贵云  梅宗书 《含能材料》2018,26(10):828-834
为了研究奥克托今(HMX)制备过程中产生的黑索今(RDX)杂质对HMX性能的影响,分别建立了掺杂率为4.17%、8.33%、12.50%和16.67%的四种HMX模型。采用分子动力学方法,计算得到了不同模型的键连双原子作用能、内聚能密度、溶度参数、爆轰参数与力学参数,并与纯HMX相关性能参数进行了比较,结果表明,RDX掺杂缺陷导致炸药的键连双原子作用能和内聚能密度减小,减小幅度分别为9.53~36.36 kJ·mol~(-1),0.028~0.135 kJ·cm~(-3);受RDX掺杂缺陷的影响,HMX与氟橡胶(F_(2311))的溶度参数的差值减小,减小幅度为0.51~2.32 J1/2·cm~(-3/2),其密度、爆速和爆压减小幅度分别为1.12%~5.59%、0.84%~4.19%和2.27%~11.14%,爆热略有轻微上升,可忽略;RDX掺杂缺陷还导致HMX的弹性模量、体积模量和剪切模量降低,而柯西压以及体积模量与剪切模量的比值上升,其变化幅度分别为1.04~3.63 GPa、0.58~1.73 GPa、0.42~1.45 GPa、0.35~2.69 GPa和0.11~0.64。这说明,随着RDX掺杂缺陷浓度增大,HMX炸药的安全性能降低、爆轰性能下降、力学性能变差、与F_(2311)的相容性变好。  相似文献   

9.
贾亚楠  申程  王鹏程  陆明 《含能材料》2016,24(6):523-527
以2,4,6-三硝基氯苯,1,1-二氨基-2,2-二硝基乙烯(FOX-7)为原料,咪唑与氟化钾作为催化剂,缩合合成了1,1-二苦氨基-2,2-二硝基乙烯(TFT),熔点为225~226℃,收率71.3%。采用红外光谱、核磁共振、质谱对其进行了表征。通过差示扫描量热研究了其热性能,热分解温度为331.3℃,热稳定性优于FOX-7。用Monte-Carlo方法估算其理论密度为1.85 g·cm~(-3),用Kamlet-Jacobs公式估算其爆热为1751.26 J·g~(-1),爆速为8.83 km·s~(-1),爆压为36.25 GPa;撞击感度H_(50)的计算值为156 cm。理论计算的结果说明该材料较FOX-7钝感,爆压高于FOX-7。  相似文献   

10.
2,6-二氨基-3,5-二硝基-1-氧吡嗪爆炸参数的理论计算   总被引:6,自引:0,他引:6  
运用预测炸药分解产物的BW法则、计算爆速的Rthsteine's方法和计算C-J压力的库珀方法等,对钝感含能材料2,6-二氨基-3,5-二硝基-1-氧吡嗪(LLM-105)的爆炸参数进行了理论计算;并与HMX和TATB的爆炸参数进行了比较,结果表明LLM-105是一种能量超过TATB、接近HMX的钝感含能材料.  相似文献   

11.
采用密度泛函理论 B3LYP方法,在aug-cc-pVDZ的水平上,对6种N-氨基多硝基二唑化合物的电子结构、能隙及感度进行了理论研究。运用Politzer的方法得到了6种化合物的固相生成热和密度;采用键离解能预估了化合物的热稳定性,其离解能为238.94~283.95 kJ·mol-1; 运用Kamlet-Jacob方程对其爆轰性能进行了预测。结果表明: 1-氨基-3,4,5-三硝基吡唑(8.99 km·s-1, 36.12 GPa)和1-氨基-2,4,5-三硝基咪唑(8.92 km·s-1, 35.56 GPa)的爆轰性能与环三亚甲基三硝胺(RDX, 8.75 km·s-1, 34.7 GPa)及环四亚甲基四硝胺(HMX, 9.1 km·s-1, 39.00 GPa)相当。综合热稳定性和爆轰性能,认为1-氨基-3,4,5-三硝基吡唑和1-氨基-2,4,5-三硝基咪唑是潜在的高能量密度材料。  相似文献   

12.
为了使爆炸网络装药在实现高爆速、高安全和小临界尺寸传爆的同时满足装药均匀性好、爆速极差小的要求,以3,4-二硝基呋咱基氧化呋咱(DNTF)和奥克托今(HMX)为主体炸药,以含能聚合物聚叠氮基缩水甘油醚(GAP)为粘结剂,配以其它助剂,设计出一种适用于微小尺寸爆炸网络的DNTF/HMX基传爆药配方,并采用微注射工艺将其装入到微型爆炸网络沟槽中。采用扫描电镜(SEM)表征了主体炸药颗粒粒径和形貌并观察和测试了装药表面;采用X射线衍射仪(XRD)测试了主体炸药和装药后炸药的晶型;采用直线传爆临界尺寸实验测试了传爆性能;采用撞击感度与冲击波感度实验测试了配方的安全性能。结果表明:配方的炸药组分固含量为85%,固化成型后装药表面平整,颗粒分布均匀,炸药晶型未发生变化,沟槽中装药密度可达1.6 g·cm~(-3)(理论密度的92%)以上。在此装药密度下,该配方的直线传爆临界尺寸为0.6 mm×0.6 mm,在0.8 mm×0.8 mm的沟槽中爆速为7558m·s~(-1),爆速极差为29 m·s~(-1);撞击感度特性落高为45.2 cm(5.0 kg落锤),冲击波安全性试验小隔板厚度值为8.74 mm。  相似文献   

13.
为研究晶体缺陷对奥克托今(HMX)基高聚物粘结炸药(PBX)性能的影响,分别建立了2种PBX"完美"模型和4种缺陷模型。采用分子动力学(MD)方法,对6种PBX模型进行了模拟计算,得到了感度、结合能、爆轰性能和力学性能参数并进行了对比。结果表明,晶体缺陷导致PBX炸药的键连双原子作用能和内聚能密度减小,分别下降2.46~5.72 kJ·mol~(-1)和0.0251~0.0544 kJ·cm~(-3),表明缺陷模型的感度增加,安全性降低;缺陷模型的结合能下降509.61~1618.24 kJ·mol~(-1),表明炸药的稳定性变差;缺陷模型的密度、爆速和爆压均下降,降幅分别为0.01~0.05 g·cm~(-3)、36.35~185.69 m·s~(-1)和0.36~1.79 GPa,其氧平衡和爆热的变化几乎可以忽略不计,表明缺陷模型的毁伤威力降低。晶体缺陷还导致PBX炸药的拉伸模量、体积模量和剪切模量分别下降0.062~1.772、0.261~1.188 GPa和0.012~0.685 GPa,体积模量与剪切模量之比增加0.002~0.366,位错和空位缺陷模型的柯西压分别下降0.822 GPa和0.479 GPa,掺杂和孪晶缺陷模型的柯西压分别上升0.114 GPa和0.491 GPa,表明缺陷模型的抗变形能力下降,柔韧性增强。  相似文献   

14.
以2,6,8,12-四乙酰基-2,4,6,8,10,12-六氮杂异伍兹烷(TAIW)为原料,经过三氟乙酸酐保护、硝化、脱保护等反应,制得了2,6,8,12-四硝基-2,4,6,8,10,12-六氮杂异伍兹烷(TNH2IW);用SnCl2分步还原六硝基六氮杂异伍兹烷(HNIW,CL-20)也可制得TNH2IW。在DFT-B3LYP/6-31G*水平下求得了TNH2IW的分子几何、电荷分布和热力学性质,计算了TNH2IW的热容、熵等热力学参数,给出了这些参数和温度之间的函数关系。在不破坏笼形结构和硝基的原则下通过构建等键反应求得TNH2IW的生成热为461kJ·mol-1。计算表明TNH2IW的爆速为9.13km.s-1,爆压为38.9GPa,爆轰性能高于TNT和RDX,与HMX相当。  相似文献   

15.
为了寻找新型高能量密度材料,设计了四硝基吡咯及其甲基、氨基、硝基衍生物。在DFT-B3LYP/6~(-3)1G*水平下对模型化合物进行了几何结构全优化。在DFT-B3LYP/6~(-3)11++G**水平计算了模型化合物的生成焓、爆轰性能。自然键轨道(NBO)分析了模型化合物引发键的强度进而考察了其热安全性。计算结果表明:1-甲基四硝基吡咯密度为1.88 g·cm~(~(-3)),爆速和爆压分别为8.66 km·s~(-1)和34.10 GPa,其爆轰性能具有与1,3,5-三硝基~(-1),3,5-三氮杂环己烷(RDX)相当的爆轰性能;四硝基吡咯、1-氨基四硝基吡咯密度分别为1.93 g·cm~(-3)和2.04 g·cm~(-3),爆速均为9.01 km·s~(-1),爆压分别为37.54 GPa和38.73 GPa,具有与1,3,5,7-四硝基~(-1),3,5,7-四氮杂环辛烷(HMX)相当的爆轰性能;由于五硝基吡咯中含有五个硝基,其热安全性最差,N(5)—NO2键离解能仅为60.8 k J·mol~(-1)。计算值与之前的实验值具有较好的一致性,表明计算值可靠。  相似文献   

16.
含DAAzF的HMX基低感高能炸药研究   总被引:1,自引:1,他引:0  
采用钝感炸药3,3′-二氨基-4,4′-偶氮呋咱(DAAzF)作为添加剂,设计了含DAAzF的奥克托今(HMX)基压装低感高能炸药配方,研究了配方的机械感度、冲击波感度、热安定性和爆轰性能.结果表明,细颗粒DAAzF能降低HMX的机械感度.在HMX基炸药中加入5%的DAAzF,可以得到一类爆速8650m·s-1以上、撞击感度低至0%且热性能好的压装型低感高能炸药.  相似文献   

17.
采用灌注成型工艺,将含敏化剂的含能灌注液填充于废弃的双芳-3发射药颗粒的空隙中,制备出灌注炸药。通过见证板试验、高速摄影、空中爆炸及水下爆炸试验分别研究了其爆轰性能、冲击波超压及能量输出特性。结果表明,采用灌注工艺,可制备性能优良的灌注炸药;随着敏化剂含量的增加,炸药的爆轰感度显著提高,但其爆速、冲击波超压及水下爆炸能量输出变化较小;该炸药的密度可达1.52 g·cm-3,爆速6600 m·s-1(Φ60 mm),比例距离为1.65~4.50 m·kg-1/3时TNT当量系数略大于1,比冲击波能及总能量分别为1.57,4.16 MJ·kg-1,高于常用的工业炸药,略低于TNT。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号