首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
质子交换膜燃料电池(PEMFC)的散热对其性能有很大影响。文章利用Gambit软件建立带冷却通道的PEMFC模型,使用计算流体力学软件Fluent中的PEM模块进行数值模拟计算。通过改变冷却通道进口处冷却水的流速和温度,对质子交换膜内温度和冷却水出口处温度进行了分析。数据表明,冷却水的流速和温度对PEM内温度分布都有一定影响。为使PEMFC正常稳定工作,冷却水流速不宜过小、温度不宜过低。  相似文献   

2.
蒋杨  焦魁 《热科学与技术》2019,18(3):200-205
针对质子交换膜燃料电池(PEMFC)水管理开展了研究,建立了一维非等温两相流解析模型,研究了不同电流密度、微孔层接触角和不同加湿方案对电池内部水分布和温度分布的影响,提出了更好的进气加湿方案。结果表明:电流密度增大会导致阳极拖干、阴极水淹加剧,导致电池各部分温度上升。因各层材料亲水性不同,在交界面处能观察到液态水阶跃现象。增大微孔层接触角促进阴极液态水反扩散到阳极,一定程度上缓解阳极变干,但过大的接触角可能导致阴极水淹加剧。通过采取"阳极充分加湿、阴极低加湿"的进气加湿方案可以有效提高电池性能,并且能在一定程度改善电池内部受热,提高电池使用寿命。  相似文献   

3.
文章建立了三维、稳态、恒温的8通道复合蛇形流道质子交换膜燃料电池(PEMFC)模型,并利用多物理场直接耦合分析软件COMSOL Multiphysics,对流道尺寸(宽度-深度)、气体扩散层(GDL)孔隙度、进气速度以及温度不同的8通道复合蛇形流道PEMFC单体内流动和传质过程进行了数值模拟和计算研究。研究结果表明,PEMFC的水分布特性、气体分布特性、电流密度分布特性、压力分布特性以及电化学特性均会随着宽度-深度的变化而变化,最佳宽度-深度组合为1.2 mm-0.8 mm,最佳GDL孔隙度-进气速度-温度组合为0.5-5 m/s-353.15 K。  相似文献   

4.
《太阳能》2021,(7)
基于提高质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)的内部传质,增强其排水特性、气体分布特性,达到改善其工作性能的目的,建立了三维、稳态、恒温的8通道蛇形流道PEMFC模型,深入分析与讨论了有、无挡板对PEMFC内部传质的影响,以及挡板的阻塞比及挡板数量对PEMFC性能的影响。研究结果表明:挡板的设计能够提高流道内部局部气体的流速,促进反应气体的输运及液态水的去除,从而提高PEMFC的性能;挡板的阻塞比的增加能够有效改善流道内部的压降,增大液态水的去除效果;随着挡板数量的逐渐增多,产生的局部气体增速区域也随之增多,高气体流速分布逐渐趋于均匀。  相似文献   

5.
为了同时解决燃料电池水管理中的干涸(dehydration)和水淹(flooding)问题,提出了一种主副流道分流式的阴极进气加湿方式,并用数值模拟分析了主副流道合流节点位置变化对燃料电池性能的影响,同时与应用非分流式进气加湿方式的燃料电池性能进行了对比。结果表明,分流式阴极进气方式可以同时降低流道内的干涸和水淹程度,从而提高电池性能;当入口处空气摩尔流量固定时,随着阴极流道上主副流道合流节点沿气体流动方向移动,电池输出电压先上升,达到最大值后,逐渐下降。  相似文献   

6.
本文利用Gambit软件建立了带冷却通道的质子交换膜燃料电池(PEMFC)模型,使用计算流体力学软件Fluent中的PEM模块进行数值模拟计算。改变冷却通道进口处冷却水的流速和温度,对质子交换膜内温度和冷却水出口处温度进行了分析,其结果为PEMFC优化提供依据。  相似文献   

7.
基于Simulink平台,利用Thermolib工具包搭建Ballard公司的Mark V PEMFC分析模型,模型包括质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)电堆模块、阴极供气系统模块、阳极供氢系统模块、冷却循环系统模块及控制系统模块等部分,通过试验数据对模型进行验证。利用搭建的模型研究电堆运行控制参数,如电堆温度、膜湿度、进气压力及压差等对PEMFC输出电压及功率的影响。研究结果揭示各运行控制参数对PEMFC电堆性能的影响,对PEMFC控制策略的开发有一定的指导意义。  相似文献   

8.
膜加湿器是保证质子交换膜燃料电池(PEMFC)正常高效运行的重要组成部分.以燃料电池的板式膜加湿器为研究对象,根据热质交换原理对膜加湿器的传热传质过程进行了理论计算,分析了空气质量流量、膜内加湿侧进口温度和膜内加湿侧进口湿度对传热传质过程的影响.在传热方面:当空气质量流量不同时,随着膜内加湿侧进口温度的变化,膜内的热流量变化趋势不一致;当膜内加湿侧进口相对湿度为95%时,随着空气质量流量的变化,膜内热流量变化不大.在传质方面:当加湿侧进口相对湿度不变时,膜中水传输速率随着空气质量流量的增大而减小;当空气质量流量不变时,膜中水传输速率随着加湿侧进口相对湿度的增大而增大.  相似文献   

9.
为了研究扩散层孔隙率对质子交换膜燃料电池(PEMFC)性能的影响,采用COMSOL软件,通过数值模拟得出气体扩散层不同孔隙率(0.2,0.4,0.6和0.8)时,单直通道和具有楔形肋片(长1 mm,高1.5 mm,宽2 mm)的PEMFC性能曲线、阴极氧气质量分数分布和水质量分数分布。结果表明:扩散层孔隙率对燃料电池性能具有较大影响,随着扩散层孔隙率从0.2增大到0.8,PEMFC的电流密度逐渐增加,最大可达847 mA/cm~2;相对于单直通道,增加孔隙率比添加楔形肋片更利于提升电池性能;在孔隙率为0.6和0.8时,氧气更易扩散到反应区,排水效果更好。  相似文献   

10.
通过对影响质子交换膜燃料电池(PEMFC)输出性能因素的分析,得出PEMFC电堆工作温度、电堆输出电流是影响PEMFC输出性能的主要因素。在输出电流一定的情况下,电堆工作温度是影响PEMFC输出电压的主要因素。为实现对空冷自增湿PEMFC的最优控制,采用实验测试及数据拟合方法,得到PEMFC电堆最优温度与输出电流的函数关系式,通过控制PEMFC电堆工作在最优温度,以实现PEMFC输出电压的最优控制。实验测试表明,该控制方法简单实用、控制效果优越,可为空冷自增湿PEMFC的最优控制提供具有实用价值的控制方法。  相似文献   

11.
Water management is a crucial factor in determining the performance of proton exchange membrane fuel cell (PEMFC) for automotive application. The shell-and-tube water-to-gas membrane humidifier is useful for humidifying the PEMFC due to its good performance. Shell-and-tube water-to-gas membrane humidifiers have liquid water on one side of the tube wall and a dry gas on the other. In order to investigate humidifier performance, a two-dimensional dynamic model of a shell-and-tube water-to-gas membrane humidifier is developed. The model is discretized into three control volumes – shell, tube and membrane – in the cross-sectional direction to resolve the temperature and species concentration of the humidifier. For validation, the dew point temperature of the simulation result is compared with that of experimental data and shows good agreement with only a slight difference. The distribution of humidification characteristics can be captured using the discretization along the air-flow direction. The humidification performance of two different flow configurations, counter and parallel, are compared under various operating conditions and geometric parameters. Finally, the dynamic response of the humidifier at the step-change of various air flow rates is investigated. These results suggest that the model can be used to optimize the inlet flow humidity of a PEMFC.  相似文献   

12.
Thermal management has been considered as one of the critical issues in proton exchange membrane fuel cell (PEMFC). Key roles of thermal management system are maintaining optimal operating temperature of PEMFC and diminishing temperature difference over a single fuel cell and stack. Severe temperature difference causes degradation of performance and deterioration of durability, so understanding temperature distribution inside a single fuel cell and stack is crucial. In this paper, two-phase HFE-7100 cooling method is suggested for PEMFC thermal management and investigated regarding temperature change inside a fuel cell. Also, the results are compared to single-phase water cooling method. Numerical study of temperature distribution inside a single PEMFC is conducted under various conditions for the two different cooling methods. Fuel cell model considering mass transfer, electrochemical reaction and heat transfer is developed.The result indicates that two-phase HFE-7100 cooling method has an advantage in temperature maintenance and temperature uniformity than single-phase water cooling method, especially in high current density region. It is also revealed that the cell temperature is less dependent on system load change with two-phase cooling method. It indicates that the fuel cell system with two-phase cooling method has high thermal stability. In addition, the effect of coolant flow rate and coolant inlet pressure in two-phase HFE-7100 cooling method are discussed. As a result, two-phase cooling method showed reliable cooling performance even with low coolant flow rate and the system temperature increased as coolant pressure rose.  相似文献   

13.
A necessary requirement for polymer electrolyte membrane fuel cell (PEMFC) performance is providing sufficient water content in the membrane. The bubble humidifier is the simplest and inexpensive method for PEMFC humidification. In this study, a prototype of bubble humidifier is designed, fabricated, and tested. The effects of water temperature in the reservoir, water level inside the reservoir and inlet air flow on the humidifier performance are investigated. The results show that the outlet air relative humidity decreases (about 6% - 11%) with an increase in the inlet air flow rate from 1 m3 h?1 to 3 m3 h?1 at four different water temperatures. The increase in the water temperature and water level inside the reservoir lead to the better humidifier performance. At the water temperature of 20°C, increasing water level from 5 cm to 7.5 cm has a significant effect on humidifier performance but increasing water level from 7.5 cm to 15 cm does not offer any advantage.  相似文献   

14.
As one of the most promising sustainable energy technologies available today, proton exchange membrane fuel cell (PEMFC) engines are becoming more and more popular in various applications, especially in transportation vehicles. However, the complexity and the severity of the vehicle operating conditions present challenges to control the temperature distribution in single cells and stack, which is an important factor influencing the performance and durability of PEMFC engines. It has been found that regulating the input and output coolant water temperature can improve the temperature distribution. Therefore, the control objective in this paper is regulating the input and output temperature of coolant water at the same time. Firstly, a coupled model of the thermal management system is established based on the physical structure of PEMFC engines. Then, in order to realize the simultaneous control of the inlet and outlet cooling water temperature of the PEMFC stack, a decoupling controller is proposed and its closed-loop stability is proved. Finally, based on the actual PEMFC engine platform, the effectiveness, accuracy and reliability of the proposed decoupling controller are tested. The experimental results show that with the proposed decoupling controller, the inlet and outlet temperatures of the PEMFC stack cooling water can be accurately controlled on-line. The temperature error range is less than 0.2 °C even under the dynamic current load conditions.  相似文献   

15.
The thermal management of a proton exchange membrane fuel cell (PEMFC) is crucial for fuel cell vehicles. This paper presents a new simulation model for the water-cooled PEMFC stacks for automotive vehicles and cooling systems. The cooling system model considers both the cooling of the stack and cooling of the compressed air through the intercooler. Theoretical analysis was carried out to calculate the heat dissipation requirements for the cooling system. The case study results show that more than 99.0% of heat dissipation requirement is for thermal management of the PEMFC stack; more than 98.5% of cooling water will be distributed to the stack cooling loop. It is also demonstrated that controlling cooling water flow rate and stack inlet cooling water temperature could effectively satisfy thermal management constraints. These thermal management constraints are differences in stack inlet and outlet cooling water temperature, stack temperature, fan power consumption, and pump power consumption.  相似文献   

16.
The effects of different operating conditions on the performance and the characteristics of a high-temperature proton exchange membrane fuel cell (PEMFC) are investigated using a three-dimensional (3-D) computational fluid dynamics (CFD) fuel-cell model. This model consists of the thermal-hydraulic equations and the electrochemical equations. Different operating conditions studied in this paper include the inlet gas temperature, system pressure, and inlet gas flow rate, respectively. Corresponding experiments are also carried out to assess the accuracy of this CFD model. Under the different operating conditions, the PEMFC performance curves predicted by the model correspond well with the experimentally measured ones. The performance of PEMFC is improved as the increase in the inlet temperature, system pressure or flow rate, which is precisely captured by the CFD fuel cell model. In addition, the concentration polarization caused by the insufficient supply of fuel gas can be also simulated as the high-temperature PEMFC is operated at the higher current density. Based on the calculation results, the localized thermal-hydraulic characteristics within a PEMFC can be reasonably captured. These characteristics include the fuel gas distribution, temperature variation, liquid water saturation distribution, and membrane conductivity, etc.  相似文献   

17.
The flow field optimization design is one of the important methods to improve the performance of proton exchange membrane fuel cell (PEMFC). In this study, a new structure with staggered blocks on the parallel flow channels of PEMFC and auxiliary flow channels under the ribs is proposed. Through numerical calculation method, the effect of blocks auxiliary flow field (BAFF) on pressure drop, reactant distribution and liquid water removal in the fuel cells are investigated. The results show that when the operating voltage is 0.5 V, the current density of BAFF is 21.74% higher than that of the straight parallel flow field (SPFF), and the power density reaches 0.65 W cm?2. BAFF improves performance by equalizing the pressure drop across sub-channels, promoting the uniform distribution of reactant, and enhancing transport across the ribs. In addition, through parameter analysis, it is found that BAFF can discharge liquid water in time at the conditions of high humidification, high current density and low temperature, which ensures the output performance of the fuel cell and improves the durability of the fuel cell. This paper provides new ideas for the improvement of PEMFC flow field design, which is beneficial to the development of PEMFC with high current density.  相似文献   

18.
In a proton exchange membrane fuel cell (PEMFC) water management is one of the critical issues to be addressed. Although the membrane requires humidification for high proton conductivity, water in excess decreases the cell performance by flooding. In this paper an improved strategy for water management in a fuel cell operating with low water content is proposed using a parallel serpentine-baffle flow field plate (PSBFFP) design compared to the parallel serpentine flow field plate (PSFFP). The water management in a fuel cell is closely connected to the temperature control in the fuel cell and gases humidifier. The PSBFFP and the PSFFP were evaluated comparatively under three different humidity conditions and their influence on the PEMFC prototype performance was monitored by determining the current density–voltage and current density–power curves. Under low humidification conditions the PEMFC prototype presented better performance when fitted with the PSBFFP since it retains water in the flow field channels.  相似文献   

19.
The proton conductivity of perfluorinated ionomer membrane used in a proton exchange membrane fuel cell (PEMFC) depends largely on the extent of hydration state of the membrane. Sufficient membrane hydration is achieved typically through the humidification of gases prior to feeding them into the fuel cell. Further, hydrogen humidification is known to have a larger impact on the performance of a PEMFC than the oxygen humidification. Bubble humidification has been a widely used method to externally humidify hydrogen. However, to-date a continuous bubble humidification system, which is essential to the continuous operation of the PEMFC system, has not been implemented. The main contributions of this work are (i) a design for continuous humidification of hydrogen for the PEMFC system and (ii) a method to maintain the RH of hydrogen between 93 and 95% (at desired temperature) over a wide range of gas flow rates. One of the key advantages of the proposed design is the flexibility of using recirculated stack coolant water to increase the energy efficiency of the PEMFC system. The design is first tested off-line and then online with a 1 kW stack. Results obtained from both the off-line and online tests indicate that the design successfully meets the demands of an online operation. It is observed that with the use of the proposed humidification scheme, the stack efficiency in terms of power output increases by about 6–19% of the power obtained under dry hydrogen conditions.  相似文献   

20.
An open-air cathode proton exchange membrane fuel cell (PEMFC) was developed. This paper presents a study of the effect of several critical operating conditions on the performance of an 8-cell stack. The studied operating conditions such as cell temperature, air flow rate and hydrogen pressure and flow rate were varied in order to identify situations that could arise when the PEMFC stack is used in low-power portable PEMFC applications. The stack uses an air fan in the edge of the cathode manifolds, combining high stoichiometric oxidant supply and stack cooling purposes. In comparison with natural convection air-breathing stacks, the air dual-function approach brings higher stack performances, at the expense of having a lower use of the total stack power output. Although improving the electrochemical reactions kinetics and decreasing the polarization effects, the increase of the stack temperature lead to membrane excessive dehydration (loss of sorbed water), increasing the ohmic resistance of the stack (lower performance).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号