首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对地表太阳辐射的不确定性和随机波动性,进而对大型光伏发电并网对电力系统的稳定性造成冲击,提出一种新的太阳辐照度超短期预测方案。该方案通过使用皮尔逊相关性分析和无监督学习中的Kmeans++算法,对多种气象数据进行筛选,找出关键气象数据并进行划分以及添加标签,接着将带有标签的关键气象数据输入双向长短期记忆网络预测模型中,以达到10 min时间间隔的太阳辐照度超短期预测。结果表明所提预测模型相较于目前常用的模型提高了预测精度。  相似文献   

2.
针对地表太阳辐照度(GHI)短期预测问题,提出一种基于长短期记忆神经网络的短期太阳辐照度预测模型.采用递归结构的训练样本,以保证训练样本内部的时间耦合性.为验证所提模型预测GHI的有效性,采用算例与传统人工神经网络模型预测结果进行对比分析.结果表明:基于长短期记忆神经网络预测模型将均方误差降低88.48%,表明所建模型...  相似文献   

3.
为提升短期太阳辐射预测的准确性,提出一种基于ICEEMDAN-LSTM和残差注意力的短期太阳辐照度预测方法。该方法利用改进的自适应噪声完备集合经验模态分解(ICEEMDAN)将原始辐射序列分解为多尺度模态分量,同时引入残差注意力机制对原始气象特征进行重构,然后利用长短期记忆网络分别提取两部分的时序特征,并融合所得特征输入至多层感知器,进行提前1小时的水平面总辐照度预测。实验结果表明,该方法能捕捉辐射序列的波动和突变,并考虑不同气象特征的重要程度,可有效提高短期太阳辐照度的预测精度。  相似文献   

4.
针对中国西部地区辐射资源充沛但观测资料匮乏的特点,提出一种基于辐照度观测数据、遥感数据、 McClear和随机森林算法的太阳辐照度超短期预测方法,并重点分析遥感数据对辐照度预测效果的影响。结果表明:添加遥感数据能够优化不同时间步长的辐照度预测效果,并能显著降低平均绝对百分比误差(MAPE)值高于40%的预测大误差出现概率。同时,添加遥感数据对预测效果的提升随时间步长呈线性增加关系,nRMSE的差值变化范围从2.08%变为13.81%;nMAE的差值从1.64%变化为14.52%;R2的差值随时间步长的变化最为明显,从-0.03变为-0.43。但值得注意的是,添加卫星数据会显著增加模型的建立和超参寻优时间。  相似文献   

5.
针对太阳辐照度的非平稳性和非线性影响多能供热系统运行效率和可靠性问题,该文提出一种基于经验模态分解(EMD)和时间卷积网络(TCN)的太阳辐照度混合预测模型EMD-TCN,更精准地从气象数据中提取太阳辐照度非线性和非平稳的隐含特征,获得更佳的预测精度。该研究利用逐时气象数据对所提出的EMD-TCN模型进行不同时间尺度的太阳辐照度预测实验,并与4种主流深度学习预测算法进行对比分析,结果表明该太阳辐照度预测模型具有更高的预测精度和泛化能力。  相似文献   

6.
对比3类LSTM功率预测方法的误差以评价业务气象预报在光伏功率预测中的作用,及训练集、测试集的不同划分对预测精度的影响。这3类功率预测方法分别是:只使用光伏功率、使用光伏功率及气象观测、使用光伏功率及气象预报。气象预报因子使用了与光伏功率相关性最高的总辐照度。分析时间段为2020年1月1日—6月30日,气象预报来自于ECMWF和NOAA/NCEP。结果表明,对于长度有限的资料,训练集、测试集的不同划分对预测模型精度会产生一定的影响。如果可使用总辐照度的观测,则短期功率预测的相对误差可降低约2.3%。与只使用光伏功率相比,既使用光伏功率又使用气象预报,短期功率预测相对误差降低约2.1%。与NOAA/NCEP气象预报相比,ECMWF气象预报明显降低了功率预测的误差。相比于只使用光伏功率,增加气象预报可提高预测精度。  相似文献   

7.
针对太阳辐照度的不稳定性和间歇性出力问题,总结并分析太阳辐照度预测领域当前的研究现状。从预测方法、预测流程、输入参数、评价指标等方面出发,对近年来不同地区、不同时间尺度下的太阳辐照度的预测进行详细的对比和分析。研究发现,基于时间序列、机器学习及混合系统的预测方法是当前主流的太阳辐照度预测方法。  相似文献   

8.
为了充分挖掘电力负荷数据中的有效信息、提高超短期负荷预测精度,提出一种基于多重聚类分析(MAC)、小波分解(WD)、卷积神经网络(CNN)和多路卷积神经网络(MCNN)的超短期负荷预测模型MAC-WD-CNN-MCNN.通过MAC方法筛选训练集样本,并采用WD算法对负荷进行频段分解,提取负荷细节特征,然后提出了MCNN...  相似文献   

9.
针对现有太阳辐照度短期预测方法的建模复杂、准确度低等问题,提出一种基于深度学习的GRU-RF动态权值组合预测方法。大气因素与太阳辐照度数据融合,将运算速度较快且模型复杂度较低的随机森林(RF)模型与带有时序记忆的门控循环单元(GRU)神经网络进行动态权值的加权集成,分别将地表接收到的太阳辐照度、近地层气温、相对湿度、近地层风速和相对气压等变化特征进行预测研究。通过几种模型对比分析,结果表明使用GRU-RF模型预测短时(9 h)太阳辐照度结果较好,运行速度较快,在不同时间间隔(5、10以及15 min)下能够很好地预测太阳辐照度数据。  相似文献   

10.
常规光伏电站仅能依赖局地地表气象观测信息进行辐照度预测,难以挖掘电站周边广域光伏资源的时空关联特性,限制了光伏电站辐照度以及发电功率的预测精度。针对上述问题,该文提出基于卫星遥感的光伏电站广域辐照度空间分布映射方法,并建立基于图卷积网络(GCN)的地表辐照度超短期时空关联预测模型,在充分利用多通道卫星数据的同时,考虑时空关联特性提高地表辐照度超短期预测精度。通过某光伏场站实例仿真分析,验证地表辐照度反演模型的可行性以及在此基础上所构建的辐照度时空关联预测模型的先进性。  相似文献   

11.
为了提高模型预测性能,提出一种综合太阳辐射模型及深度学习的光伏功率预测模型。首先,利用太阳辐射机理建立太阳辐射模型(SRM),估算出水平面上总辐射值,再由斜面辐照度转换方法计算出光伏组件所接收的斜面辐射值。其次,通过皮尔逊相关分析法筛选出对光伏功率影响较大的主要因素,将斜面辐射计算值及主要影响因素作为输入,采用卷积神经网络(CNN)和长短期记忆网络(LSTM)建立光伏功率SRM-CNN-LSTM预测模型。分别利用春夏秋冬四季典型日的数据开展对比实验,结果表明:与几种其他方法相比,该文方法具有更好的预测效果。  相似文献   

12.
为提高光伏功率的预测精度,提出一种变分模态分解(VMD)、模糊熵(FE)、卷积神经网络(CNN)和双向长短期记忆神经网络(BiLSTM)的光伏功率组合预测模型。该方法首先采用VMD将原始光伏序列数据分解成多个子序列,从而减少随机波动分量和噪声干扰对预测模型的影响,通过FE对每个子序列进行重组,使用一维CNN的局部连接及权值共享提取不同分量的特征,将CNN输出的特征融合并输入到BiLSTM模型中;利用BiLSTM模型建立历史数据之间的时间特征关系,得到光伏发电功率预测结果。与BiLSTM、CNN-BiLSTM、EEMD-CNN-BiLSTM、VMD-CNN-BiLSTM这4种模型进行比较,该文提出的VMD-FE-CNN-BiLSTM模型在光伏发电功率预测中具有较高的精确度和稳定性,满足光伏发电短期预测的要求。  相似文献   

13.
针对光伏发电功率随机性强、难以准确预测的问题,提出一种基于时间卷积网络(TCN)、双向长短期记忆网络(BiLSTM)和回声状态网络(ESN)的组合预测方法。首先,使用自适应噪声完备集合经验模态分解(CEEMDAN)将功率数据分解为一系列相对平稳、不同波动模式的子功率序列;再将分解重构后的功率序列和其他特征序列输入到TCN-BiLSTM-Attention-ESN组合模型中,其中TCN-BiLSTM-Attention用于提取光伏序列波动特征并构建时空特征向量;最后,将所提取的时空特征向量输入ESN获得预测结果。采用新疆某光伏电站的光伏功率数据进行验证,结果表明与时下先进的预测方法相比,所提方法具有更高的预测精度,有助于提升光伏发电占比,保障电力系统平衡和运行安全。  相似文献   

14.
考虑不同太阳辐射对光伏功率的影响,提出一种基于二次分解和改进粒子群算法的光伏功率预测模型。通过Spearman和Kendall对影响光伏功率的各气象因素进行相关性分析,发现总倾斜辐射、总水平辐射、漫射倾斜辐射、漫射水平辐射与光伏功率的相关系数较大。然后利用CLARANS将样本数据按太阳辐射强度分为强辐射、中辐射和弱辐射,针对3类数据采用自适应噪声完备集合经验模态分解(CEEMDAN)对关键气象因素和功率进行二次分解,充分挖掘时序信息并降低数据的不稳定性。提出一种改进粒子群算法(GWCPSO)用于优化卷积神经网络和双向长短期记忆网络的超参数,提高调参效率,最后构建预测模型进行光伏功率预测。分析3种太阳辐射类型下不同分解方法与网络模型的预测误差,结果表明,所的预测模型可有效提高不同太阳辐射下光伏功率的预测精度。  相似文献   

15.
准确预测短期多种能源负荷,是确保综合能源系统可靠、高效运行的必要前提。为此,提出了一种基于遗传粒子群混合优化(genetic algorithm particle swarm optimization, GAPSO)算法的卷积长短期记忆神经网络(convolutional neural network-long short-term memory, CNN-LSTM)综合能源系统多元负荷预测模型。首先,利用皮尔逊系数来描述各影响因素与负荷之间的相关性强弱。其次,采用GAPSO算法对长短期记忆(long short-term memory, LSTM)网络模型进行改进,然后构建卷积神经网络(convolutional neural networks, CNN)以提取小时级高阶特征,并通过改进后的LSTM网络模型对提取的隐含高阶特征进行分位数回归建模,构建了基于GAPSO-CNN-LSTM综合能源系统多元负荷预测模型。最后,以美国亚利桑那州立大学坦佩校区综合能源系统负荷数据为算例进行验证,结果表明:改进后的算法具有更好的收敛能力,模型具有更高的预测精度。  相似文献   

16.
提出一种考虑数据分解和进化捕食策略的双向长短期记忆网络(BiLSTM)短期光伏发电功率预测模型。首先,针对大量高频分量且频率成分复杂的原始光伏发电功率,通过数据分解理论,提出互补集合经验模态分解(CEEMD)与矩阵运算的奇异值分解(SVD)融合的(SVD-CEEMD-SVD,SCS)方法,实现光伏发电功率数据的二次降噪。然后,建立进化捕食策略(EPPS)和BiLSTM的组合预测模型,以更好地挖掘模型的内在特征,提升功率预测精度。最后,以山东某地区实际光伏电站为例,验证模型在滤除光伏发电功率噪声和提升预测精度方面的有效性。  相似文献   

17.

克尔效应和色散对相干光纤通信系统的传输距离和数据容量有极大限制。为了补偿光纤传输中的非线性损伤,结合卷积神经网络(convolutional neural network,CNN)、双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)和注意力机制(attention)的特点,提出了一种基于CNN-BiLSTM-Attention模型的光纤非线性损伤补偿算法,并在DP-16QAM 30Gbaud的相干光通信系统中进行了仿真。仿真结果表明,与CNN-BiLSTM模型相比,在1200 km的传输距离下,该算法以降低0.03~0.23 dB的Q因子为代价,使复杂度降低了约31.6%;在相似复杂度下,该算法在最佳传输功率下的Q因子提高了0.43 dB。

  相似文献   

18.
We propose novel smart forecasting models for Direct Normal Irradiance (DNI) that combine sky image processing with Artificial Neural Network (ANN) optimization schemes. The forecasting models, which were developed for over 6 months of intra-minute imaging and irradiance measurements, are used to predict 1 min average DNI for specific time horizons of 5 and 10 min. We discuss optimal models for low and high DNI variability seasons. The different methods used to develop these season-specific models consist of sky image processing, deterministic and ANN forecasting models, a genetic algorithm (GA) overseeing model optimization and two alternative methods for training and validation. The validation process is carried over by the Cross Validation Method (CVM) and by a randomized training and validation set method (RTM). The forecast performance for each solar variability season is evaluated, and the models with the best forecasting skill for each season are selected to build a hybrid model that exhibits optimal performance for all seasons. An independent testing set is used to assess the performance of all forecasting models. Performance is assessed in terms of common error statistics (mean bias and root mean square error), but also in terms of forecasting skill over persistence. The hybrid forecast models proposed in this work achieve statistically robust forecasting skills in excess of 20% over persistence for both 5 and 10 min ahead forecasts, respectively.  相似文献   

19.

电网在运行过程中会产生大量的设备缺陷文本记录,针对变电设备缺陷文本的特点,文章提出了基于注意力机制的混合神经网络(hybrid neural network based on attention mechanism,HNNA)电力设备缺陷文本挖掘方法。首先在总结电力设备缺陷文本特点的基础上,参考中文文本分类的一般流程,结合自主编写的词典和停用词表对缺陷文本进行预处理;利用Word2vec模型将词语映射到高维空间;使用卷积神经网络(convolution neural network,CNN)和双向长短期记忆网络(bidirectional long short term memory,BiLSTM)提取文本局部特征和上下文特征;将提取的特征进行融合,最后采用Attention实现特征权重的分配,增强关键特征对分类效果的影响,并从多个评价维度与传统机器学习模型、深度学习模型对比。算例结果表明,提出的模型具有更好的分类效果,可以实现电力设备缺陷等级的高效准确划分。

  相似文献   

20.
精准的短期风电功率预测对电力系统稳定运行至关重要。为提高短期预测精确度,提出一种基于变分模态分解(VMD)-样本熵(SE)和利用注意力(attention)机制改进双向长短期记忆网络(BiLSTM)以及误差修正的组合预测模型。首先,采用VMD将原始功率数据分解为若干个相对平稳的子序列,重构样本熵值相似分量以降低复杂性;然后,引入Attention对BiLSTM的隐含层状态输出分配相应的权重以突出重要影响的输入特征,同时采用极限梯度提升(XGBoost)对误差进行修正,从而进一步提高预测精确度;最后,将初步预测值和修正预测值相加得到最终结果。采用风电场实际数据进行验证,结果表明,所提组合模型的平均绝对误差(MAE)下降至1.6565,与其他模型相比精度提升25.8%~56.5%,具有较好的预测效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号