首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
A hydrogen producing strain F.P 01 was newly isolated from cow dung sludge in an anaerobic bioreactor. The strain F.P 01 was a mesophilic and facultative anaerobic bacterium, which exhibited gram-negative staining in both the exponential and stationary growth phases, and a regular long rod-shaped bacteria with the size of 0.6–0.9 μm × 1.2–2.5 μm, and also could biodegrade a variety of carbohydrates such as glucose, xylose, maltose, etc. The effects of important process parameters on hydrogen producing of F.P 01 were further investigated from hydrogen fermentation of maltose by strain F.P 01, including substrate concentration, medium pH, etc. And the results showed that hydrogen production potential and hydrogen production rate from maltose of this strain F.P 01 was180 mLH2/g-maltose and 4.0 mLH2/h, respectively. The corresponding hydrogen concentration of 58–73% was also be observed. Both butyric acid and acetic acid as main by-product was left in the reactor.  相似文献   

2.
In view of increasing attempts for the production of renewable energy, the production of biohydrogen energy by a new mesophilic bacterium Clostridium sp. YM1 was performed for the first time in the dark fermentation. Experimental results showed that the fermentative hydrogen was successfully produced by Clostridium sp. YM1 with the highest cumulative hydrogen volume of 3821 ml/L with a hydrogen yield of 1.7 mol H2/mol glucose consumed. Similar results revealed that optimum incubation temperature and pH value of culture medium were 37 °C and 6.5, respectively. The study of hydrogen production from glucose and xylose revealed that this strain was able to generate higher hydrogen from glucose compared to that from xylose. The profile of volatile fatty acids produced showed that hydrogen generation by Clostridium sp. YM1 was butyrate-type fermentation. Moreover, the findings of this study indicated that an increase in head space of fermentation culture positively enhanced hydrogen production.  相似文献   

3.
In cyanobacteria, treatment with low concentrations of NaHSO3 can enhance photosynthetic efficiency, whereas NaHSO3 in high amounts often inhibits cell growth and photosynthesis may even cause death. In the present study, our results showed that treatment with moderate concentrations of NaHSO3 considerably improved the yield of photobiological H2 production in the filamentous N2-fixing cyanobacterium Anabaena sp. strain PCC 7120. Under steady state conditions, the accumulated H2 levels in cells treated with 1 mM NaHSO3 were approximately 10 times higher than that in untreated cells. Such improvement occurred in heterocysts and was most likely caused by increases in the expression and activity of nitrogenase. The effects of treatment with low, moderate, and high concentrations of NaHSO3 in cyanobacteria were proposed on the basis of the results obtained in the present study and from previous knowledge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号