首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In this paper, an experimental study of the condensation of water vapor from a binary mixture of air and low‐grade steam has been depicted. The study is based upon diffusion heat transfer in the presence of high concentration of noncondensable gas. To simplify the study, experimental analysis is supported by empirical solutions. The experimental setup is custom designed for testing a new shell and tube type heat exchanger supplied by the manufacturer. Air–vapor mixture at 80 °C (max) and 20.2% relative humidity enters the heat exchanger at a mass flow rate of 480 kg/h and condenses 27 kg/h vapor using cooling water at an inlet temperature of 7 °C to 10 °C and mass flow rate of 3500 kg/h. By using the experimental data of constant inlet air mass fraction, mixture gas velocity, and different volumetric flow rate of the cold fluid, the local heat transfer coefficients are obtained. The main objective of this work is to establish an approximate value for surface area and overall heat transfer coefficient of a horizontal shell and tube condenser used in process space. Under designed working conditions, the condenser is found to work efficiently with 90% vapor condensation by mass.  相似文献   

2.
A heat exchanger with a shallow gas–solid fluidized bed was experimentally studied in order to analyze energy recovery from solid particles leaving a combustion process. The experiments were carried out with and without vertical baffles in a fluidized bed with immersed horizontal tubes filled with water, in a counter flow arrangement. Two particle diameters (254 and 385 μm), two solid flow rates (50 and 80 kg/h) and two gas flow rates (46 and 50 kg/h) were tested. The bed temperature along the equipment length, the mass flow rate and the inlet and outlet temperatures of solid particles, air and water were measured in order to obtain the bed-tube heat transfer coefficient and the heat exchanger effectiveness. An increment of about 55% in the heat transfer coefficient and higher values of the heat exchanger effectiveness, in experiments with the presence of baffles, was verified. The experimental results also showed that the suspension-wall heat transfer coefficient increased considerably with the solid flow rate and also when the particle diameter decreased.  相似文献   

3.
The present work deals with the examination of two different configurations of inlet mantle connections, on a solar thermosiphon of indirect heating type. In the first configuration, the heat transfer fluid enters the upper side of the mantle heat exchanger, while in the second it enters the lower side of the mantle. The outlet is always placed at the bottom of the mantle, oppositively to the inlet. Diurnal tests have been carried out by monitoring the inlet and outlet mantle temperatures, as well as thermosiphonic flow rates. Also, draw-offs measurements were performed, according to ISO 9459-2 and EN 12976-2 standards, at the end of each test day. The final achieved water temperatures of the first configuration are in general higher, than those of the second one, which means a better quality of the delivered energy. Also, the first configuration appears to pick up greater performance, under high solar energy gain (high insolation rate – low thermal losses).  相似文献   

4.
DSG太阳能槽式集热器动态特性   总被引:3,自引:0,他引:3  
采用数值模拟方法,分析了以水,水蒸气为工质的DSG槽式集热器的动态流动与传热特性.首先建立了管内流体的一维多相流动与传热模型,并利用差分法对该模型进行求解,计算结果与现有文献数据吻合较好.分析了稳态条件下,集热器出口流体工质参数受太阳辐射强度、流体质量流量、人口温度和入口压力的影响规律.在动态分析中,研究了辐射强度变化所导致的出口参数变化特性.从阶跃响应和脉冲响应的分析中得出,虽然热惯性存在,但短期的辐射强度波动对出口温度仍有较大影响,但对出口压力的影响较小.辐射波动将对一次直通DSG系统出口温度产生很大波动.  相似文献   

5.
利用平行流换热器和自制的硅胶/氯化钙复合吸附剂研制了一台小型吸附式制冷样机,并对样机进行了试验测试。测试结果表明:相对于硅胶吸附制冷样机,复合吸附剂吸附制冷样机的COP和制冷功率都有了明显的提高;在热源温度为90℃,冷却水温度为35℃,冷冻水进口温度为16.5℃、出口温度为14.4℃,吸附10min,脱附5 min的运行工况下,在整个循环周期内(15 min),制冷功率为1.03 kW,SCP为128.3 W/kg,COP为0.29;在吸附周期内(10 min),制冷功率为1.54 kW,SCP为192.4 W/kg,样机的能量密度为10.3 kW/m3,平行流换热器的换热系数为472.3 W/(m2.K)。  相似文献   

6.
为提高系统产水性能并降低内部结垢,提出一种由非跟踪复合抛物面聚光器加热导热油至100 ℃以上作为供能热源,采用喷雾辅助闪蒸的海水淡化系统。实验研究实际天气中,不同太阳辐照度下进水口温度、进水流量对系统产淡水性能的影响。采用密封压力桶可将进水口温度升至沸点以上,最高可达123 ℃。太阳辐照度波动较大时,进水口温度保持稳定,系统可稳定运行。进水口温度对产水速率影响显著,平均进水口温度从100 ℃升至120 ℃时,产水速率提高47.61%。当进水流量为50 kg/h,压力维持在0.045 MPa时,系统产水速率最大,日累计淡水产量可达11.14 kg/(d·m2),小时效率为81.45%,单级生产率为9.15%。  相似文献   

7.
The performance of sewage heat exchangers plays an important role in the sewage source heat pump systems when the sewage does not enter the heat pump unit directly, especially when untreated sewage is used as heat or cold source. In this article, a free-flow channel heat exchanger is proposed to be used in an untreated sewage source heat pump system. First the article designs the sizes of heat exchanger according to the real system requirements, and then it models and analyzes dynamic characteristics on the simulink platform. The transfer functions that are suitable for the heat exchanger are deduced. The analysis shows that the wall temperature is 9.1°C when the untreated sewage and water temperatures at the inlet are 15 and 7°C, respectively. The result is obtained when considering the temperature at the outlet is affected by the temperature at the inlet. The variable quantity of water temperature at the outlet is affected greatly by the variable quantity of water temperature at the inlet and the variable quantity of sewage temperature at the outlet by the variable quantity of sewage temperature at the inlet. Besides, the measured values of water temperatures at the inlet and outlet are also observed from the real system where the free-flow channel heat exchanger is adopted. The variable quantities of water temperature at the outlet are calculated according to the measured values, and are compared with the model results deduced by the transfer functions. The comparative result shows that the differences between the measured and model results of water temperature variable quantities at the outlet range from ?1 to 1°C, thus getting the water temperatures at the outlet according to the model results. The differences of the water temperature at the outlet between the measured values and the deduced results are from ?0.5 to 0.5°C. It illustrates the temperature at the outlet can be estimated by modeling the temperature variable quantity at the outlet.  相似文献   

8.
建立了可进行壳管式换热器动态特性试验研究系统,通过试验研究的方法对水-油为换热工质的连续螺旋折流板管壳式换热器动态特性进行了试验研究,进口流量扰动为等百分比流量特性,研究了4种流量扰动方式下水和油出口温度的动态响应。同时研究了在一定Re数下,不同的流体扰动量对换热器进出口温升的影响,得到了换热器进出口温升与流体扰动量之间的关联式。实验表明,液液换热系统温度的动态响应时间比较长,研究发现在正负的流量扰动下,换热器进出口温度变化呈现线性变化,进出口温升在正负流量扰动下其变化曲线具有对称特征。分别建立了有限差分数值预测模型及人工神经网络模型对换热器油侧的出口温度进行了动态预测,预测结果与试验值符合良好,人工神经网络的预测结果要好于数值模拟预测,其偏差绝对值在1.3%以内,表明人工神经网络在进行复杂的系统辨识时具有一定的参考及应用价值。  相似文献   

9.

A thermal energy storage medium must meet the requirements of a stable storage material with high heat capacity. Heat storage based on the sensible heating of media such as water, rock, and earth represents the first generation of solar energy storage subsystems and technology for their utilization is well developed. However, recently the heat storage based on the latent heat associated with a change in phase of a material offers many advantages over sensible heat storage. The most important characteristic of such a subsystem is its sufficient storage capacity. The PCM (phase change material) behavior is visualized by constructing an idealized model thermal capacitor subjected to simulated solar system environmental conditions which include thermal cycling utilizing the latent heat of paraffin for heating and cooling. The proposed model of the capacitor is of a flat plate geometry consisting of two panel compartments forming the body of the capacitor containing the paraffin, leaving at their inner surfaces a thin passage allowing the water flow. The whole structure is assumed to be insulated to minimize heat loss. Analysis solution is used to generate data about the temperature distribution, the melt thickness, and the heat stored in the PCM under two conditions of: (a) constant mass flow rate tests for various water inlet temperatures, and (b) constant water inlet temperature for various mass flow rates. A FORTRAN computer program is constructed to perform the analysis. It is found that water outlet temperature increases with time until it becomes nearly equal to the inlet temperature. Increasing the mass flow rate for a given inlet temperature, decreases the time required for outlet temperature to reach a given value. Increasing inlet temperature for a given mass flow rate gives a very rapid decrease in the time required for the outlet water temperature to reach a given value. Instantaneous rate of heat storage is determined from the inlet-to-exit temperature differential and measured flow rate. This rate is then integrated numerically to determine the cumulative total energy stored as a function of time. It is found that the instantaneous rate of heat storage decreases till reaching a nearly constant value. The total or cumulative heat storage as a function of time, showed a nearly linear trend in the mid-range time, and it increased with increasing inlet temperature.  相似文献   

10.
This work aims to evaluate the performance of an integrated phase change material (PCM) solar collector. The dynamic behavior of the system is investigated via a theoretical model based on the first law of thermodynamics and oriented to deliver a maximum outlet water temperature. A parametric study is used to assess the effects of the inlet water temperature, the PCM thicknesses and properties and the mass flow rates on the outlet water temperature and the melt fraction. A comparison with a conventional solar water heater without heat storage is made. Results indicate that charging and discharging processes of PCM offer six stages. It is observed that the complete solidification time is longer than the melting one. The latent heat storage system increases the heating requirements at night. The rise is most enhanced for higher inlet water temperature, melting PCM temperature and PCM thickness and for lower mass flow rate.  相似文献   

11.
In this work a flash vapor desalination unit was assembled which consisted of a solar water-cooled system of three flat plate collectors and a storage tank. A copper coil was immersed inside the tank, the saline water was pumped through the coil and delivered to the flash tank, the vapor then being flashed to the surroundings. The saline water level in the flash tank was taken as a measure of the quantity flashed. The temperature of both cooling and saline water at the inlet and outlet were measured; solar irradiation and wind speed were also recorded. The mass ratio (R) which is the ratio of the rate of the mass flashed to that of saline water circulated and the total unit efficiency were taken as dependent variables. Graphical and numerical optimization methods were conducted to find the values of the dependent variables. The optimization algorithm is described and the results are shown.  相似文献   

12.
A new ideal evaporative freezing cycle for freezing of water is proposed and analyzed by using the conservation of energy and the conservation of mass principles. The proposed cycle utilizes low temperature heat sources such as solar energy, geothermal energy, and waste heat, and consists of a freezing chamber, an air-to-air heat exchanger, a desiccant chamber, an air-to-water heat exchanger, and a fan through which air circulates at atmospheric pressure. The operating principles of the cycle is based on the fact that as dry air picks up moisture from water, the water vapor absorbs heat primarily from the remaining body of the water, and thus the water is cooled and frozen. It is shown that the proposed system can produce 28.4 g ice/kg dry air circulated at most and have a thermal coefficient of performance up to 0.47. The proposed evaporative freezing cycle offers a viable alternative to the conventional refrigeration methods and provides refrigeration by using the inexpensive source of thermal energy source. Also, various aspects of the cycle proposed is discussed.  相似文献   

13.
This work is focused on the experimental study of the performance of a heat exchanger designed for aero engine applications. The heat exchanger is operating as a heat recuperator by taking advantage of the thermal energy of the exhaust gas of the aero engine in order to obtain a better combustion with less pollutant emissions. The experimental study has been performed in a wind-tunnel by taking detailed flow and thermal measurements on a 1:1 model of the heat exchanger under various operating conditions described by the hot gas inlet mass flow rates and its spatial direction (different angles of attack and inclination) towards the heat exchanger. The hot gas has been modeled with preheated air. Six sets of measurements have been carried-out for different hot gas inlet and outlet temperatures, including also isothermal measurements without any heat transfer in order to have a reference point for the pressure drop of the flow through the device. The experimental results showed that the effect of the angle of attack on the pressure drop is significant while the effect of the angle of inclination is negligible. Additionally, the pressure drop through the heat exchanger is greatly affected by the heat transfer.  相似文献   

14.
Cathode channel of a PEM fuel cell is the critical domain for the transport of water and heat. In this study, a mathematical model of water and heat transport in the cathode channel is established by considering two-phase flow of water and air as well as the phase change between water and vapor. The transport process of the species of air is governed by the convection-diffusion equation. The VOSET (coupled volume-of-fluid and level set method) method is used to track the interface between air and water, and the phase equilibrium method of water and vapor is employed to calculate the mass transfer rate on the two-phase interface. The present model is validated against the results in the literature, then applied to investigate the characteristics of two-phase flow and heat transfer in the cathode channel. The results indicate that in the inlet section, water droplets experience three evolution stages: the growing stage, the coalescence stage and the generation stage of dispersed water drops. However, in the middle and outlet sections of the channel, there are only two stages: the growth of water droplets, and the formation of a water film. The mass transfer rate of phase change in the inlet section of the channel varies over time, exhibiting an initial increase, a decrease followed, and a stabilization finally, with the maximum and stable values of 1.78 × 10?4 kg/s and 1.52 × 10?4 kg/s for Part 1, respectively. In the middle and outlet sections, the mass transfer rate increase firstly and then keeps stable gradually. Furthermore, regarding the distribution of the temperature and vapor mass fraction in the channel, near the upper surface of the channel, the temperature and vapor mass fraction first change slightly (x < 0.03 m) and then rapidly decrease with fluctuations (x > 0.03 m). In the middle of the channel, the temperature and vapor mass fraction slowly decrease with fluctuation.  相似文献   

15.
This work investigates the influence of electrohydrodynamics (EHD) on the flow and heat transfer during convective boiling of HFE7000. A unique tube-and-shell heat exchanger has been constructed with heated water flowing on the shell side and a saturated mixture of refrigerant flowing within the tube side. The heat exchanger is novel in that it allows full visual access to the flow in the inner tube while being both thermally and electrically conductive. This permits observation of the two-phase flow regimes, which is not possible with metallic test sections. In this work the influence of EHD on the flow regimes and subsequent overall heat transfer is investigated for fixed inlet refrigerant mass flux of 100 kg/m2-s, inlet quality of 3%, and wall superheat of approximately 11.5°C. For these conditions the applied voltage across a concentric inner electrode and the outer wall of the tube was varied between 0 kV and 10 kV at 60 Hz AC. In particular, this work focuses on quantifying the level of overall enhancement that is achievable with EHD for this heat exchanger. This is done in the context of the additional heat extracted by the working fluid in the heat exchanger compared with the field-free case and the additional power penalties required to do so. Heat transfer enhancements of up to 1.8 -fold were realized in this heat exchanger. Even so, there were hydraulic power increases as well as electrical power required to achieve the heat transfer enhancement. It was found that the electrical power was the dominant penalty and that an overall enhancement of 40 times more heat power extracted than input required was achieved. Finally, a proportional–integral–derivative (PID) control system has been utilized in conjunction with a high-voltage amplifier in order to accurately control the heat transfer rate of the heat exchanger. To our knowledge this is the first solid-state control system of this type for a two-phase heat exchanger.  相似文献   

16.
In the present study, the theoretical and experimental results of the second law analysis on the heat transfer and flow of a horizontal concentric tube heat exchanger are presented. The experiments setup are designed and constructed for the measured data. Hot water and cold water are used as working fluids. The test runs are done at the hot and cold water mass flow rates ranging between 0.02 and 0.20 kg/s and between 0.02 and 0.20 kg/s, respectively. The inlet hot water and inlet cold water temperatures are between 40 and 50 °C, and between 15 and 20 °C, respectively. The effects of the inlet conditions of both working fluids flowing through the heat exchanger on the heat transfer characteristics, entropy generation, and exergy loss are discussed. The mathematical model based on the conservation equations of energy is developed and solved by the central finite difference method to obtain temperature distribution, entropy generation, and exergy loss. The predicted results obtained from the model are validated by comparing with the present measured data. There is reasonable agreement from the comparison between predicted results and those from the measured data.  相似文献   

17.
A detailed one-dimensional numerical model describing the heat and fluid-dynamic behavior inside a compound parabolic concentrator (CPC) used as an ammonia vapor generator has been developed. The governing equations (continuity, momentum, and energy) inside the CPC absorber tube, together with the energy equation in the tube wall and the thermal analysis in the solar concentrator were solved.The computational method developed is useful for the solar vapor generator design applied to absorption cooling systems. The effect on the outlet temperature and vapor quality of a range of CPC design parameters was analyzed. These parameters were the acceptance half-angle and CPC length, the diameter and coating of the absorber tube, and the manufacture materials of the cover, the reflector, and the absorber tube. It was found that the most important design parameters in order to obtain a higher ammonia–water vapor production are, in order of priority: the reflector material, the absorber tube diameter, the selective surface, and the acceptance half-angle.The direct ammonia–water vapor generation resulting from a 35 m long CPC was coupled to an absorption refrigeration system model in order to determine the solar fraction, cooling capacity, coefficient of performance, and overall efficiency during a typical day of operation. The results show that approximately 3.8 kW of cooling at −10 °C could be produced with solar and overall efficiencies up to 46.3% and 21.2%, respectively.  相似文献   

18.
The Salt gradient solar pond (SGSP) is used for process heating, power generation and to achieve refrigeration. In this paper the performance of an in-pond heat exchanger of a laboratory model SGSP was analyzed both experimentally and computationally. A laboratory model solar pond was fabricated using GI sheet of 1.5 mm thick for the dimension 600 × 500 × 500 mm and the performance of the pond was experimentally determined under solar irradiated condition. The experiment was conducted for a period of 10 days and the hourly variations of the temperatures of inlet, outlet, storage zones and ambient were measured and analyzed. To computationally analyze the performance of the SGSP, a model was developed using software tools CATIA and HYPERMESH and the performance of the modeled in-pond heat exchanger of the solar pond was determined using FLUENT software. The performance of the SGSP was analyzed for laminar and turbulent flow conditions. The experimental results were compared with computational results and close agreement was observed.  相似文献   

19.
Experiments are presented to demonstrate the benefits of dividing an indirect thermal storage into two compartments. The transient discharge experiments were conducted in an undivided and equally divided 126 l rectangular storage vessel, which has a height to depth aspect ratio of 9.3:1 and is inclined at 30° to the horizontal. A 240-tube copper heat exchanger with a total surface area of 2.38 m2 was immersed in the storage fluid. For the divided storage, the heat exchanger flow path was in series through the two compartments. Water flow rate through the heat exchanger was varied from 0.05 to 0.15 kg/s to demonstrate the effect of varying the number of transfer units (NTU) from 2.2 to 7 on the relative performance of undivided and divided storage vessels. Reported measurements include transient storage temperature distribution, heat exchanger outlet temperature, delivered energy, and exergy of the divided and undivided storage. The divided storage provides higher energy delivery rates and higher heat exchanger outlet temperatures during most of the discharge. The magnitude of these benefits depends on NTU and the extent of discharge. For a flow rate of 0.05 kg/s, corresponding to a nominal NTU of 7, the divided storage delivers a maximum of 11% more energy than the undivided storage when 100 l of hot water or 55% of the stored energy has been delivered. For a flow rate of 0.15 kg/s, corresponding to a nominal NTU of 2.5, the divided storage delivers a maximum of 5% more energy at the same level of discharge. Data agree with first and second law analyses of a storage system comprised of two tanks in series.  相似文献   

20.
叙述了利用FLUENT6.3软件中的组分输运模型及多相流模型,对置于温室外的空气—土壤换热器(SHESS)进行三维动态模拟,采用典型时段的气象参数,分析换热器在输入环境空气时出口温度和含湿量随时间的变化趋势。指出,埋管深4m的换热器,最大可将输入空气的温度降低10.9℃,平均可降低9.2℃;最大减少含湿量8.14g/kg.干,平均可减少3.86g/kg.干,得出,空气—土壤换热器在北方地区夏季对温室具有明显的降温除湿效果的结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号