首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen stored on a large scale in porous rocks helps alleviate the main drawbacks of intermittent renewable energy generation and will play a significant role as a fuel substitute to limit global warming. This study discusses the injection, storage and production of hydrogen in an open saline aquifer anticline using industry standard reservoir engineering software, and investigates the role of cushion gas, one of the main cost uncertainties of hydrogen storage in porous media.The results show that one well can inject and reproduce enough hydrogen in a saline aquifer anticline to cover 25% of the annual hydrogen energy required to decarbonise the domestic heating of East Anglia (UK). Cushion gas plays an important role and its injection in saline aquifers is dominated by brine displacement and accompanied by high pressures. The required ratio of cushion gas to working gas depends strongly on geological parameters including reservoir depth, the shape of the trap, and reservoir permeability, which are investigated in this study. Generally, deeper reservoirs with high permeability are favoured. The study shows that the volume of cushion gas directly determines the working gas injection and production performance. It is concluded that a thorough investigation into the cushion gas requirement, taking into account cushion gas costs as well as the cost-benefit of cushion gas in place, should be an integral part of a hydrogen storage development plan in saline aquifers.  相似文献   

2.
《Applied Thermal Engineering》2001,21(17):1769-1778
In hot humid countries such as Thailand, air conditioning plant is installed in most commercial and industrial buildings. A conventional air conditioning system, which is normally operated when cooling is required, is the most favored option. Ice thermal storage on a large scale, used to provide a cool reservoir for use in peak periods, is however an attractive financial option for large buildings to supply coolness. There are two means of operating ice thermal storage systems, namely full storage and partial storage.In this paper, a computer model has been developed in order to compare energy use in conventional air cooling systems and ice thermal storage systems. Under Thailand electricity tariff rates, the results from the simulations show that the full ice thermal storage can save up to 55% of the electricity cost required for cooling per month when compared with the conventional system. It is also found that using full storage option can reduce the total energy consumption by 5% for the selected building.  相似文献   

3.
Aquifers are underground porous formations containing water. Confined aquifers are the formations surrounded by two impermeable layers, called cap rocks and bed rocks. These aquifers are suitable for seasonal thermal energy storage.In the present study, a confined aquifer was considered to meet the cooling and heating energy needs of a residential complex located in Tehran, Iran. Three different alternatives were analyzed in this aquifer thermal energy storage (ATES), including: using ATES for cooling alone, for cooling and heating, as a heat pump, and for heating alone, employing flat plate solar energy collectors. A numerical simulation, based on the finite difference method, was carried out for velocity and temperature distributions as well as the heat transfer in the aquifer. The thermal energy recovery factor and the annual coefficient of performance of the system were determined under various schemes of operation, revealing that the combination of the ATES with the heat pump, to meet both cooling and heating needs of the complex, is the best. The study was repeated for different aquifer properties.  相似文献   

4.
Conceptual design of compressed air energy storage electric power systems   总被引:4,自引:0,他引:4  
Conceptual design studies have been conducted to identify Compressed Air Energy Storage (CAES) systems which are technically feasible and potentially attractive for future electric utility load-levelling applications. The CAES concept consists of compressing air during off-peak periods and storing it in underground facilities for later use. During peak-load periods the air would be withdrawn, heated by recuperation and combustion and expanded through turbines to generate power. By using off-peak electricity for compression and stored air for peak-load generation, the resulting oil consumption would be about 40 per cent of that consumed by conventional gas-turbine peaking plants. The turbomachinery requirements for this type of system could be met using existing equipment with relatively modest modifications. Although the study discussed herein focused on the storage of air in hydraulically compensated, mined, hard-rock caverns, the compressed air could also be stored in underground aquifers or leached-out salt cavities. Conventional underground excavation technology could be used to construct these storage caverns. A geological survey of the north-central and north-east regions of the United States indicated that sufficient siting opportunities exist such that a prudently designed CAES plant should have little long-term adverse impact on the environment. The competitive position of CAES relative to conventional generation alternatives is highly dependent on utility-specific factors. The cost of electric energy from CAES is generally competitive with costs from conventional peak-shaving systems such as gas turbines and will improve as low-cost off-peak energy from nuclear plants becomes available.  相似文献   

5.
Recent studies indicate that solar pond house heating systems could be competitive with some conventional ones, particularly if a pond were to be used to supply thermal energy to several buildings. It is appropriate and important, therefore, to extend these investigations to include industrial process heating and also the influence of variations in salt content and unit price of salt on pond cost. To do this, equations are derived which yield a single set of dimensions for a hypothetical pond satisfying a given heating requirement. Pond dimensions are determined for house heating, winter crop drying and paper processing in the Richland, Washington area; cost estimates for hypalon-lined ponds of these dimensions are then compared with costs attributed to conventional thermal energy sources used for these purposes. Such comparisons can help guide researchers in determining requirements necessary for the pond to be competitive, e.g. the maximum stabilizing salt content allowable for a competitive pond.  相似文献   

6.
Vapour absorption cooling systems, powered by solar thermal energy, are now commercially manufactured in sizes ranging from 1.5 to over 20 RT (one refrigeration ton = 3.51 kW of cooling). The needed thermal energy at appropriate temperature potential can either be provided by solar thermal collectors or else from a solar pond. The paper gives the assessment criteria and results for technical and economic evaluation of the performance of absorption chiller using a solar pond. These results, based on Kuwait's environmental data and costs, have been compared with three alternate cooling systems, namely:
  • 1 Solar thermal collector absorption cooling system.
  • 2 Solar photovoltaic cooling system.
  • 3 Standard vapour compression cooling system.
The criteria, used for performance evaluation of the solar cooling systems on a technical basis, consists of assessing the extent to which such systems can make a positive contribution in a conserving fossil fuel. This is done by first estimating the total electrical energy needed by the standard system (defined in para. 3 above) to produce one unit of cooling output. Solar cooling systems are then analysed and compared with a standard system to establish their electrical energy saving or generation capability, after accounting for the parasitic electrical energy used in pump/fan motors and equivalent energy needed for the production of soft water (used-up in the cooling tower) from seawater desalination. The economic analysis considers the cost and life of subsystems and that of the electrical and water desalination plants to arrive at the unit cooling cost. The unit cooling is defined as the ratio of amortized capital investments plus operation and maintenance costs over the year and the total yearly cooling production by the system. The results show that the solar pond absorption cooling system is the closest competitor to the conventional cooling system.  相似文献   

7.
A salt gradient solar pond is a large scale solar collector having built-in heat storage capability. This is in part due to the mass of water in the pond and in part to the ground beneath the pond. Some scholars have already paid attention to the ground thermal storage. In this work, emphasis has been put upon the un-steady state performance and the transient behavior of SGSPs. A simple computer simulation method is adopted to study the ground heat loss and the heat recovery rate under varied combinations of the depth of the underground water table, the thickness of the lower convective zone, the heat withdrawal pattern, and the thermal properties of the soil. The effect of an insulation layer between the pond and the ground is also examined.  相似文献   

8.
K.R. Agha 《Solar Energy》2009,83(4):501-149
The paper discusses optimisation of the size of the pond and the number of stages for three different storage zone temperatures taking into account the large variation in quantity of energy supplied by the pond between summer and winter. One result is that over-sizing the pond, leading to some rejection of the heat collected during the summer (which is referred to as peak clipping), will result in a higher utilisation factor of the desalination plant and a reduction in the summer/winter yield ratio. Optimum peak clipping days, leading to the minimum product water cost, for each storage zone temperature and performance ratio is presented.The sensitivity analysis of the various factors affecting the overall water costs show that the capital costs comprise about two thirds (2/3) of the total desalinated water costs. This demonstrates and re-emphasises the inherent and basic fact that solar desalination is a capital intensive enterprise. Each 1% increase in interest rate increases solar pond thermal energy costs by about 13-15% and desalinated water costs from SP/MSF combination by about 10-13%.  相似文献   

9.
Jacob假定下含水层水流方程的线性探讨   总被引:2,自引:0,他引:2  
在Jacob假定下通过含水层形变的本构方程分析表明,渗透系数是水头的单调增函数.而储水率的含水层骨架弹性贡献部分不受含水层形变影响。参数取值量级分析表明,含水层的储水率为常数,所取常数的计算式因岩性和水头下降幅度的不同而有所不同;渗透系数可否作为常数也取决于岩性和水头下降幅度。对水头下降超过10m的松散砂性含水层及粘性储水层,渗透系数随孔隙水头的下降而减小.水流方程呈非线性。对于半成岩或成岩含水层以及水头下降小于10m的粘性储水层和松散砂性含水层,渗透系数为常数,水流方程呈线性。  相似文献   

10.
While ice storage systems are designed according to a defined strategy for warm day loads, it is interesting to consider other conventional control strategies for mid-season day loads. Three different charging–discharging control strategies are applied to an existing cooling plant and compared in terms of operating costs and energy consumption. A cooling plant model is built. A time stage equal to 15 min is considered to simulate numerically a whole charging–discharging process and compare the different control strategies. These simulations take into account existing technical constraints and set points. EES software is used. The operating costs of the cooling plant are evaluated by taking into account both the energy and the demand cost rate. It is shown that an ice storage system can allow savings of operating costs. However, they can increase energy consumption.  相似文献   

11.
马玖辰  赵军 《可再生能源》2011,29(5):113-119
基于地下水水热运移的基本原理,针对地下咸水层储能系统中地下水密度及粘滞性系数变化显著的特点,建立地下咸水层水-热-盐耦合储能模型。应用校正后的数学模型,对天津滨海某地下咸水层储能系统未来5 a的地下水动力场和温度场的变化进行了预测。结果表明:在地下咸水层水文地质条件不变的情况下,渗透系数随地下咸水层温度和浓度的增减而增减;在夏季储热期,地下水渗透流速随地下温度的上升呈逐渐上升趋势;在冬季储冷期,地下水渗透流速随地下水温度的下降呈逐渐下降趋势,从而影响地下咸水层温度场的变化,在第5年供冷期末,3#抽水井水温上升0.5℃,发生热突破现象。  相似文献   

12.
《Biomass & bioenergy》1999,16(2):155-170
In this paper, environmental benefits of the cultivation of perennial energy crops in Sweden, which have been identified and quantified in an earlier paper, are evaluated economically. Several different benefits, ranging from global to site-specific, could be achieved by replacing annual food crops with perennial energy crops. The economic value of these environmental benefits, including reductions in costs to farmers (direct costs) and to society as a whole (external costs), has been estimated to be from US$ 0.1 up to US$ 5/GJ biomass. For comparison, the production costs (excluding transport) of Salix and reed canary grass are about 4.4 and US$ 5.0/GJ, respectively. Purification of waste water in energy crop cultivation has the highest economic value, followed by reduced nutrient leaching through riparian buffer strips, recirculation of sewage sludge, and reduced wind erosion through shelter belts consisting of Salix. The value of other environmental benefits is estimated to be less than US$ 0.7/GJ. If 200,000 ha of Sweden’s totally available arable land of 2.8 Mha were available for energy crop cultivation, around 45 PJ biomass could theoretically be produced per year, at an average cost of about US$ 0.7/GJ, including the value of environmental benefits. It is assumed that priority is given to cultivations with the highest total value, as several different environmental effects could be achieved on the same cultivation site. If 800,000 ha were to be available, the corresponding cost of some 150 GJ biomass per year would be around US$ 2.8/GJ.  相似文献   

13.
This paper presents a cost analysis of grid-connected electric energy storage. Various energy storage technologies are considered in the analysis. Life-cycle cost analysis is used. The results are presented in terms of the cost added to electricity stored and discharged, in US dollar per kilowatt hour. Results are compared with wholesale and retail electricity costs and with the cost of conventional pumped hydro storage.  相似文献   

14.
Promising electricity and hydrogen production chains with CO2 capture, transport and storage (CCS) and energy carrier transmission, distribution and end-use are analysed to assess (avoided) CO2 emissions, energy production costs and CO2 mitigation costs. For electricity chains, the performance is dominated by the impact of CO2 capture, increasing electricity production costs with 10–40% up to 4.5–6.5 €ct/kWh. CO2 transport and storage in depleted gas fields or aquifers typically add another 0.1–1 €ct/kWh for transport distances between 0 and 200 km. The impact of CCS on hydrogen costs is small. Production and supply costs range from circa 8 €/GJ for the minimal infrastructure variant in which hydrogen is delivered to CHP units, up to 20 €/GJ for supply to households. Hydrogen costs for the transport sector are between 14 and 16 €/GJ for advanced large-scale coal gasification units and reformers, and over 20 €/GJ for decentralised membrane reformers. Although the CO2 price required to induce CCS in hydrogen production is low in comparison to most electricity production options, electricity production with CCS generally deserves preference as CO2 mitigation option. Replacing natural gas or gasoline for hydrogen produced with CCS results in mitigation costs over 100 €/t CO2, whereas CO2 in the power sector could be reduced for costs below 60 €/t CO2 avoided.  相似文献   

15.
Seasonal energy storage is an important component to cope with the challenges resulting from fluctuating renewable energy sources and the corresponding mismatch of energy demand and supply. The storage of heat via medium deep borehole heat exchangers is a new approach in the field of Borehole Thermal Energy Storage. In contrast to conventional borehole storages, fewer, but deeper borehole heat exchangers tap into the subsurface, which serves as the storage medium. As a result, the thermal impact on shallow aquifers is strongly reduced mitigating negative effects on the drinking water quality. Furthermore, less surface area is required. However, there are no operational experiences, as the concept has not been put into practice so far. In this study, more than 250 different numerical storage models are compared. The influence of the characteristic design parameters on the storage system's behaviour and performance is analysed by variation of parameters like borefield layout, fluid inlet temperatures and properties of the reservoir rocks. The results indicate that especially larger systems have a high potential for efficient seasonal heat storage. Several GWh of thermal energy can be stored during summertime and extracted during the heating period with a high recovery rate of up to 83%. Medium deep borehole heat exchanger arrays are suitable thermal storages for fluctuating renewable energy sources and waste heat from industrial processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
An assessment is presented to use hydrogen or hydrogen-rich fuels as a vector in the Central Receiver Solar Utility (CRSU) concept.

The CRSU is conceived to meet primarily the domestic energy requirements for space heating and hot water production of a community. It normally operates to provide low grade heat with sensible seasonal heat storage and district heating systems. However, there are institutional problems connected with using sensible heat storage and low grade energy distribution systems into dwellings.

An alternative to this would be to produce hydrogen and hydrogen-rich fuels by using an advanced conversion technology and eliminate low grade heat storage and distribution systems. Two developing technologies, namely high temperature electrolysis and thermochemical processes, are considered for production of the vector. Then, an assessment is carried out at the conceptual level for fully dedicated Central Receiver Solar Utility Plants which integrate a central receiver system, thermochemical plant or electrical power generating system and synthetic fuel production plant with necessary auxiliary sub-systems.

It is shown that for a 10% capital recovery factor, the cost of hydrogen at the plant will be about $18 per GJ using thermochemical processes and about $20 per GJ using high temperature electrolysis processes.

The solar-hydrogen can also be converted to a more easily stored fuel for domestic use such as methanol, ethanol, ammonia or fuel oil. In this case, there is a distinct possibility that by using waste heavy fuels, tar sands and biomass, the cost of synthetic fuel can be considerably reduced.  相似文献   


17.
This paper is concerned with the development of a new method for making and separating ice and saving floated ice by installing an evaporation plate at underwater within a storage tank. In a conventional harvest-type ice storage system, a tank saves ice by separating a formed ice from an installed evaporation plate, which is located above an ice storage tank as an ice storage system. A new harvest-type method shows better heat transfer efficiency than a convectional method. It is because the evaporation panel is directly contacted with water in a storage tank. Also, at a conventional system a circulating pump, a circulating water distributor and a piping are installed, but these components are not necessary in a new method. In this study two kinds of ice storage systems are experimentally investigated to study the thermal characteristics of ice storage tanks. The results show the applicable possibility and performance enhancement of a new type.  相似文献   

18.
土壤蓄冷与耦合热泵集成系统中土壤蓄冷的模拟研究   总被引:5,自引:2,他引:5  
结合土壤耦合热泵技术及冻土蓄冷技术的优点,提出一种全新的热泵空调系统形式一土壤蓄冷与土壤耦合热泵集成系统。该系统将土壤耦合热泵系统(GCHP)的地下埋管换热器与蓄冷装置合二为一,在电力低谷期将冷量贮存到土壤中,以满足高峰电力期空调负荷的需要。在能量平衡的基础上建立了土壤蓄冷释冷过程的数学模型,并采用固相增量法模型对其进行了模拟计算,分析其应用的技术可行性,为土壤蓄冷与土壤耦合热泵集成系统的应用提供理论支持。  相似文献   

19.
Performance estimates are compared for a solar assisted domestic hot water ststem with a yearly reference load of 13.7 GJ(3811 kWhryr−1) for storage subsystems of pure water and hybrid water and wax systems. Three models of the hybrid system are used ranging from the infinite heat transfer model, the detailed heat transfer model and the simplified constant Nusselt number model.Sensitivity studies are made for changes in collector type (loss coefficient), collector area, mass of water stored, mass of wax stored, heat exchanger gap spacing, and thermal properties of wax.The optimal heat exchanger gap spacing is established for a particular prototype wax store on hand and its performance figure is given.Although the conclusion is drawn that a paraffin wax store in this particular application would not replace water as a storage medium, other conclusions are discussed which would apply to the design and modelling of wax storage subsystems in other applications.  相似文献   

20.
This paper describes a method for evaluating characteristics of underground thermal properties and groundwater, whose evaluation is essential for designing systems of underground thermal energy utilization. First, the systems using underground thermal energy are classified into two categories: borehole system with indirect heat exchange, and aquifer system with direct use of underground water. These systems are also divided into thermal storage systems and heat source/sink systems. Second, the characteristics of the underground in Japan are analyzed by using a geographical information system (GIS) and hydrogeological information. Regulations on environmental protection, such as those relating to national parks for instance, and the distribution of thermal energy demand eliminate 77% of Japan from consideration for underground thermal energy utilization. Areas limited to borehole thermal energy utilization account for 17% of areas where underground thermal energy can be used, with the remaining 74% suitable for both boreholes and aquifers. Finally, we estimate the thickness of aquifer and groundwater velocity in Sapporo. We find that most parts of Sapporo are suitable for aquifer thermal energy storage (ATES).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号